Polytope of Type {2,26,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,26,4,4}*1664
if this polytope has a name.
Group : SmallGroup(1664,17724)
Rank : 5
Schlafli Type : {2,26,4,4}
Number of vertices, edges, etc : 2, 26, 52, 8, 4
Order of s0s1s2s3s4 : 52
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,26,2,4}*832, {2,26,4,2}*832
   4-fold quotients : {2,13,2,4}*416, {2,26,2,2}*416
   8-fold quotients : {2,13,2,2}*208
   13-fold quotients : {2,2,4,4}*128
   26-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
   52-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)( 17, 28)( 18, 27)
( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 30, 41)( 31, 40)( 32, 39)( 33, 38)
( 34, 37)( 35, 36)( 43, 54)( 44, 53)( 45, 52)( 46, 51)( 47, 50)( 48, 49)
( 56, 67)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 69, 80)( 70, 79)
( 71, 78)( 72, 77)( 73, 76)( 74, 75)( 82, 93)( 83, 92)( 84, 91)( 85, 90)
( 86, 89)( 87, 88)( 95,106)( 96,105)( 97,104)( 98,103)( 99,102)(100,101);;
s2 := (  3,  4)(  5, 15)(  6, 14)(  7, 13)(  8, 12)(  9, 11)( 16, 17)( 18, 28)
( 19, 27)( 20, 26)( 21, 25)( 22, 24)( 29, 30)( 31, 41)( 32, 40)( 33, 39)
( 34, 38)( 35, 37)( 42, 43)( 44, 54)( 45, 53)( 46, 52)( 47, 51)( 48, 50)
( 55, 69)( 56, 68)( 57, 80)( 58, 79)( 59, 78)( 60, 77)( 61, 76)( 62, 75)
( 63, 74)( 64, 73)( 65, 72)( 66, 71)( 67, 70)( 81, 95)( 82, 94)( 83,106)
( 84,105)( 85,104)( 86,103)( 87,102)( 88,101)( 89,100)( 90, 99)( 91, 98)
( 92, 97)( 93, 96);;
s3 := (  3, 55)(  4, 56)(  5, 57)(  6, 58)(  7, 59)(  8, 60)(  9, 61)( 10, 62)
( 11, 63)( 12, 64)( 13, 65)( 14, 66)( 15, 67)( 16, 68)( 17, 69)( 18, 70)
( 19, 71)( 20, 72)( 21, 73)( 22, 74)( 23, 75)( 24, 76)( 25, 77)( 26, 78)
( 27, 79)( 28, 80)( 29, 81)( 30, 82)( 31, 83)( 32, 84)( 33, 85)( 34, 86)
( 35, 87)( 36, 88)( 37, 89)( 38, 90)( 39, 91)( 40, 92)( 41, 93)( 42, 94)
( 43, 95)( 44, 96)( 45, 97)( 46, 98)( 47, 99)( 48,100)( 49,101)( 50,102)
( 51,103)( 52,104)( 53,105)( 54,106);;
s4 := ( 55, 81)( 56, 82)( 57, 83)( 58, 84)( 59, 85)( 60, 86)( 61, 87)( 62, 88)
( 63, 89)( 64, 90)( 65, 91)( 66, 92)( 67, 93)( 68, 94)( 69, 95)( 70, 96)
( 71, 97)( 72, 98)( 73, 99)( 74,100)( 75,101)( 76,102)( 77,103)( 78,104)
( 79,105)( 80,106);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(106)!(1,2);
s1 := Sym(106)!(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)( 17, 28)
( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 30, 41)( 31, 40)( 32, 39)
( 33, 38)( 34, 37)( 35, 36)( 43, 54)( 44, 53)( 45, 52)( 46, 51)( 47, 50)
( 48, 49)( 56, 67)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 69, 80)
( 70, 79)( 71, 78)( 72, 77)( 73, 76)( 74, 75)( 82, 93)( 83, 92)( 84, 91)
( 85, 90)( 86, 89)( 87, 88)( 95,106)( 96,105)( 97,104)( 98,103)( 99,102)
(100,101);
s2 := Sym(106)!(  3,  4)(  5, 15)(  6, 14)(  7, 13)(  8, 12)(  9, 11)( 16, 17)
( 18, 28)( 19, 27)( 20, 26)( 21, 25)( 22, 24)( 29, 30)( 31, 41)( 32, 40)
( 33, 39)( 34, 38)( 35, 37)( 42, 43)( 44, 54)( 45, 53)( 46, 52)( 47, 51)
( 48, 50)( 55, 69)( 56, 68)( 57, 80)( 58, 79)( 59, 78)( 60, 77)( 61, 76)
( 62, 75)( 63, 74)( 64, 73)( 65, 72)( 66, 71)( 67, 70)( 81, 95)( 82, 94)
( 83,106)( 84,105)( 85,104)( 86,103)( 87,102)( 88,101)( 89,100)( 90, 99)
( 91, 98)( 92, 97)( 93, 96);
s3 := Sym(106)!(  3, 55)(  4, 56)(  5, 57)(  6, 58)(  7, 59)(  8, 60)(  9, 61)
( 10, 62)( 11, 63)( 12, 64)( 13, 65)( 14, 66)( 15, 67)( 16, 68)( 17, 69)
( 18, 70)( 19, 71)( 20, 72)( 21, 73)( 22, 74)( 23, 75)( 24, 76)( 25, 77)
( 26, 78)( 27, 79)( 28, 80)( 29, 81)( 30, 82)( 31, 83)( 32, 84)( 33, 85)
( 34, 86)( 35, 87)( 36, 88)( 37, 89)( 38, 90)( 39, 91)( 40, 92)( 41, 93)
( 42, 94)( 43, 95)( 44, 96)( 45, 97)( 46, 98)( 47, 99)( 48,100)( 49,101)
( 50,102)( 51,103)( 52,104)( 53,105)( 54,106);
s4 := Sym(106)!( 55, 81)( 56, 82)( 57, 83)( 58, 84)( 59, 85)( 60, 86)( 61, 87)
( 62, 88)( 63, 89)( 64, 90)( 65, 91)( 66, 92)( 67, 93)( 68, 94)( 69, 95)
( 70, 96)( 71, 97)( 72, 98)( 73, 99)( 74,100)( 75,101)( 76,102)( 77,103)
( 78,104)( 79,105)( 80,106);
poly := sub<Sym(106)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope