Questions?
See the FAQ
or other info.

# Polytope of Type {7,2,9,4}

Atlas Canonical Name : {7,2,9,4}*1008
if this polytope has a name.
Group : SmallGroup(1008,500)
Rank : 5
Schlafli Type : {7,2,9,4}
Number of vertices, edges, etc : 7, 7, 9, 18, 4
Order of s0s1s2s3s4 : 63
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {7,2,3,4}*336
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := ( 8, 9)(10,13)(11,12)(14,22)(15,21)(16,23)(17,19)(18,20)(24,30)(25,31)
(26,28)(27,29)(32,38)(33,39)(34,36)(35,37)(40,43)(41,42);;
s3 := ( 8,12)( 9,10)(11,19)(13,15)(14,16)(17,28)(18,29)(20,22)(21,24)(23,25)
(26,36)(27,37)(30,32)(31,33)(34,38)(35,42)(39,40)(41,43);;
s4 := ( 8,22)( 9,14)(10,16)(13,23)(17,27)(19,29)(24,33)(26,35)(28,37)(30,39)
(32,40)(38,43);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(43)!(2,3)(4,5)(6,7);
s1 := Sym(43)!(1,2)(3,4)(5,6);
s2 := Sym(43)!( 8, 9)(10,13)(11,12)(14,22)(15,21)(16,23)(17,19)(18,20)(24,30)
(25,31)(26,28)(27,29)(32,38)(33,39)(34,36)(35,37)(40,43)(41,42);
s3 := Sym(43)!( 8,12)( 9,10)(11,19)(13,15)(14,16)(17,28)(18,29)(20,22)(21,24)
(23,25)(26,36)(27,37)(30,32)(31,33)(34,38)(35,42)(39,40)(41,43);
s4 := Sym(43)!( 8,22)( 9,14)(10,16)(13,23)(17,27)(19,29)(24,33)(26,35)(28,37)
(30,39)(32,40)(38,43);
poly := sub<Sym(43)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4,
s4*s3*s2*s4*s3*s4*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;

```

to this polytope