Questions?
See the FAQ
or other info.

# Polytope of Type {9,18}

Atlas Canonical Name : {9,18}*1008b
if this polytope has a name.
Group : SmallGroup(1008,880)
Rank : 3
Schlafli Type : {9,18}
Number of vertices, edges, etc : 28, 252, 56
Order of s0s1s2 : 18
Order of s0s1s2s1 : 14
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,9}*504a
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (2,3)(4,7)(5,6)(8,9);;
s1 := (1,2)(3,4)(6,8)(7,9);;
s2 := ( 2, 9)( 3, 8)( 4, 5)( 6, 7)(10,11);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(11)!(2,3)(4,7)(5,6)(8,9);
s1 := Sym(11)!(1,2)(3,4)(6,8)(7,9);
s2 := Sym(11)!( 2, 9)( 3, 8)( 4, 5)( 6, 7)(10,11);
poly := sub<Sym(11)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope