Questions?
See the FAQ
or other info.

# Polytope of Type {14,9}

Atlas Canonical Name : {14,9}*1008c
if this polytope has a name.
Group : SmallGroup(1008,880)
Rank : 3
Schlafli Type : {14,9}
Number of vertices, edges, etc : 56, 252, 36
Order of s0s1s2 : 3
Order of s0s1s2s1 : 18
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,9}*504a
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (2,3)(4,7)(5,6)(8,9);;
s1 := ( 1, 2)( 3, 6)( 4, 7)( 5, 8)(10,11);;
s2 := ( 2, 8)( 3, 9)( 4, 6)( 5, 7)(10,11);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(11)!(2,3)(4,7)(5,6)(8,9);
s1 := Sym(11)!( 1, 2)( 3, 6)( 4, 7)( 5, 8)(10,11);
s2 := Sym(11)!( 2, 8)( 3, 9)( 4, 6)( 5, 7)(10,11);
poly := sub<Sym(11)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope