Questions?
See the FAQ
or other info.

# Polytope of Type {6,10}

Atlas Canonical Name : {6,10}*120
Also Known As : {6,10|2}. if this polytope has another name.
Group : SmallGroup(120,42)
Rank : 3
Schlafli Type : {6,10}
Number of vertices, edges, etc : 6, 30, 10
Order of s0s1s2 : 30
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,10,2} of size 240
{6,10,4} of size 480
{6,10,5} of size 600
{6,10,3} of size 720
{6,10,5} of size 720
{6,10,6} of size 720
{6,10,8} of size 960
{6,10,10} of size 1200
{6,10,10} of size 1200
{6,10,10} of size 1200
{6,10,12} of size 1440
{6,10,4} of size 1440
{6,10,6} of size 1440
{6,10,3} of size 1440
{6,10,5} of size 1440
{6,10,6} of size 1440
{6,10,6} of size 1440
{6,10,10} of size 1440
{6,10,10} of size 1440
{6,10,14} of size 1680
{6,10,3} of size 1800
{6,10,15} of size 1800
{6,10,16} of size 1920
{6,10,4} of size 1920
{6,10,5} of size 1920
Vertex Figure Of :
{2,6,10} of size 240
{3,6,10} of size 360
{4,6,10} of size 480
{3,6,10} of size 480
{4,6,10} of size 480
{6,6,10} of size 720
{6,6,10} of size 720
{6,6,10} of size 720
{8,6,10} of size 960
{4,6,10} of size 960
{6,6,10} of size 960
{9,6,10} of size 1080
{3,6,10} of size 1080
{5,6,10} of size 1200
{5,6,10} of size 1200
{10,6,10} of size 1200
{12,6,10} of size 1440
{12,6,10} of size 1440
{12,6,10} of size 1440
{3,6,10} of size 1440
{4,6,10} of size 1440
{14,6,10} of size 1680
{15,6,10} of size 1800
{16,6,10} of size 1920
{4,6,10} of size 1920
{3,6,10} of size 1920
{4,6,10} of size 1920
{12,6,10} of size 1920
{8,6,10} of size 1920
{12,6,10} of size 1920
{6,6,10} of size 1920
{8,6,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,10}*40
5-fold quotients : {6,2}*24
6-fold quotients : {2,5}*20
10-fold quotients : {3,2}*12
15-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,10}*240, {6,20}*240a
3-fold covers : {18,10}*360, {6,30}*360a, {6,30}*360b
4-fold covers : {24,10}*480, {6,40}*480, {12,20}*480, {6,20}*480c
5-fold covers : {6,50}*600, {30,10}*600a, {30,10}*600b
6-fold covers : {36,10}*720, {18,20}*720a, {6,60}*720a, {12,30}*720a, {12,30}*720b, {6,60}*720b
7-fold covers : {42,10}*840, {6,70}*840
8-fold covers : {48,10}*960, {6,80}*960, {12,20}*960a, {24,20}*960a, {12,40}*960a, {24,20}*960b, {12,40}*960b, {12,20}*960b, {6,20}*960e, {6,40}*960d, {6,40}*960e, {12,20}*960c
9-fold covers : {54,10}*1080, {18,30}*1080a, {6,30}*1080a, {6,90}*1080a, {18,30}*1080b, {6,30}*1080c, {6,30}*1080d
10-fold covers : {12,50}*1200, {6,100}*1200a, {30,20}*1200a, {60,10}*1200a, {30,20}*1200b, {60,10}*1200b
11-fold covers : {66,10}*1320, {6,110}*1320
12-fold covers : {72,10}*1440, {18,40}*1440, {36,20}*1440, {6,120}*1440a, {24,30}*1440a, {12,60}*1440a, {24,30}*1440b, {6,120}*1440b, {12,60}*1440b, {18,20}*1440, {6,30}*1440g, {6,60}*1440c, {12,30}*1440a, {6,60}*1440d
13-fold covers : {78,10}*1560, {6,130}*1560
14-fold covers : {42,20}*1680a, {84,10}*1680, {12,70}*1680, {6,140}*1680a
15-fold covers : {18,50}*1800, {6,150}*1800a, {6,150}*1800b, {90,10}*1800a, {90,10}*1800b, {30,30}*1800a, {30,30}*1800b, {30,30}*1800d, {30,30}*1800g
16-fold covers : {12,40}*1920a, {24,20}*1920a, {24,40}*1920a, {24,40}*1920b, {24,40}*1920c, {24,40}*1920d, {12,80}*1920a, {48,20}*1920a, {12,80}*1920b, {48,20}*1920b, {12,40}*1920b, {24,20}*1920b, {12,20}*1920a, {96,10}*1920, {6,160}*1920, {6,40}*1920a, {12,40}*1920e, {12,40}*1920f, {6,40}*1920b, {6,20}*1920a, {6,40}*1920c, {24,20}*1920c, {24,20}*1920d, {6,40}*1920d, {6,20}*1920b, {12,20}*1920b, {12,20}*1920c, {12,40}*1920g, {12,40}*1920h, {24,20}*1920e, {24,20}*1920f, {12,10}*1920a
Permutation Representation (GAP) :
```s0 := ( 3, 4)( 7, 8)(11,13)(12,14)(17,19)(18,20)(23,25)(24,26)(27,29)(28,30);;
s1 := ( 1, 3)( 2, 7)( 5,12)( 6,11)( 9,18)(10,17)(13,14)(15,24)(16,23)(19,20)
(21,28)(22,27)(25,26)(29,30);;
s2 := ( 1, 9)( 2, 5)( 3,17)( 4,19)( 6,21)( 7,11)( 8,13)(10,15)(12,27)(14,29)
(16,22)(18,23)(20,25)(24,28)(26,30);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(30)!( 3, 4)( 7, 8)(11,13)(12,14)(17,19)(18,20)(23,25)(24,26)(27,29)
(28,30);
s1 := Sym(30)!( 1, 3)( 2, 7)( 5,12)( 6,11)( 9,18)(10,17)(13,14)(15,24)(16,23)
(19,20)(21,28)(22,27)(25,26)(29,30);
s2 := Sym(30)!( 1, 9)( 2, 5)( 3,17)( 4,19)( 6,21)( 7,11)( 8,13)(10,15)(12,27)
(14,29)(16,22)(18,23)(20,25)(24,28)(26,30);
poly := sub<Sym(30)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope