Questions?
See the FAQ
or other info.

# Polytope of Type {2,10,3,2}

Atlas Canonical Name : {2,10,3,2}*1200
if this polytope has a name.
Group : SmallGroup(1200,980)
Rank : 5
Schlafli Type : {2,10,3,2}
Number of vertices, edges, etc : 2, 50, 75, 15, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
25-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 8,23)( 9,27)(10,26)(11,25)(12,24)(13,18)(14,22)(15,21)
(16,20)(17,19);;
s2 := ( 3, 4)( 5, 7)( 8,12)( 9,11)(13,15)(16,17)(19,22)(20,21)(23,26)(24,25);;
s3 := ( 4,10)( 5,17)( 6,19)( 7,26)( 8,20)( 9,27)(12,13)(15,21)(16,23)(18,24);;
s4 := (28,29);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 4, 7)( 5, 6)( 8,23)( 9,27)(10,26)(11,25)(12,24)(13,18)(14,22)
(15,21)(16,20)(17,19);
s2 := Sym(29)!( 3, 4)( 5, 7)( 8,12)( 9,11)(13,15)(16,17)(19,22)(20,21)(23,26)
(24,25);
s3 := Sym(29)!( 4,10)( 5,17)( 6,19)( 7,26)( 8,20)( 9,27)(12,13)(15,21)(16,23)
(18,24);
s4 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```

to this polytope