Questions?
See the FAQ
or other info.

Polytope of Type {8,2,20,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,2,20,2}*1280
if this polytope has a name.
Group : SmallGroup(1280,1044762)
Rank : 5
Schlafli Type : {8,2,20,2}
Number of vertices, edges, etc : 8, 8, 20, 20, 2
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,2,20,2}*640, {8,2,10,2}*640
   4-fold quotients : {8,2,5,2}*320, {2,2,20,2}*320, {4,2,10,2}*320
   5-fold quotients : {8,2,4,2}*256
   8-fold quotients : {4,2,5,2}*160, {2,2,10,2}*160
   10-fold quotients : {4,2,4,2}*128, {8,2,2,2}*128
   16-fold quotients : {2,2,5,2}*80
   20-fold quotients : {2,2,4,2}*64, {4,2,2,2}*64
   40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (10,11)(12,13)(15,18)(16,17)(19,20)(21,22)(23,26)(24,25)(27,28);;
s3 := ( 9,15)(10,12)(11,21)(13,23)(14,17)(16,19)(18,27)(20,24)(22,25)(26,28);;
s4 := (29,30);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(30)!(2,3)(4,5)(6,7);
s1 := Sym(30)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(30)!(10,11)(12,13)(15,18)(16,17)(19,20)(21,22)(23,26)(24,25)(27,28);
s3 := Sym(30)!( 9,15)(10,12)(11,21)(13,23)(14,17)(16,19)(18,27)(20,24)(22,25)
(26,28);
s4 := Sym(30)!(29,30);
poly := sub<Sym(30)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope