Questions?
See the FAQ
or other info.

# Polytope of Type {9,9,2}

Atlas Canonical Name : {9,9,2}*1296a
if this polytope has a name.
Group : SmallGroup(1296,3492)
Rank : 4
Schlafli Type : {9,9,2}
Number of vertices, edges, etc : 36, 162, 36, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
27-fold quotients : {3,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 4,19)( 5,21)( 6,20)( 7,10)( 8,12)( 9,11)(13,25)(14,27)(15,26)
(17,18)(23,24);;
s1 := ( 1, 4)( 2,22)( 3,13)( 5,19)( 6,10)( 8,25)( 9,16)(11,24)(12,15)(14,21)
(17,27)(20,23);;
s2 := ( 2, 3)( 4,10)( 5,12)( 6,11)( 7,19)( 8,21)( 9,20)(14,15)(16,22)(17,24)
(18,23)(26,27);;
s3 := (28,29);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(29)!( 2, 3)( 4,19)( 5,21)( 6,20)( 7,10)( 8,12)( 9,11)(13,25)(14,27)
(15,26)(17,18)(23,24);
s1 := Sym(29)!( 1, 4)( 2,22)( 3,13)( 5,19)( 6,10)( 8,25)( 9,16)(11,24)(12,15)
(14,21)(17,27)(20,23);
s2 := Sym(29)!( 2, 3)( 4,10)( 5,12)( 6,11)( 7,19)( 8,21)( 9,20)(14,15)(16,22)
(17,24)(18,23)(26,27);
s3 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2 >;

```

to this polytope