Questions?
See the FAQ
or other info.

# Polytope of Type {7,2,50}

Atlas Canonical Name : {7,2,50}*1400
if this polytope has a name.
Group : SmallGroup(1400,36)
Rank : 4
Schlafli Type : {7,2,50}
Number of vertices, edges, etc : 7, 7, 50, 50
Order of s0s1s2s3 : 350
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,2,25}*700
5-fold quotients : {7,2,10}*280
10-fold quotients : {7,2,5}*140
25-fold quotients : {7,2,2}*56
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := (10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)
(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)(46,47)(48,49)(50,51)
(52,53)(54,55)(56,57);;
s3 := ( 8,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,24)(21,22)(23,28)(25,26)
(27,32)(29,30)(31,36)(33,34)(35,40)(37,38)(39,44)(41,42)(43,48)(45,46)(47,52)
(49,50)(51,56)(53,54)(55,57);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(57)!(2,3)(4,5)(6,7);
s1 := Sym(57)!(1,2)(3,4)(5,6);
s2 := Sym(57)!(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)
(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)(46,47)(48,49)
(50,51)(52,53)(54,55)(56,57);
s3 := Sym(57)!( 8,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,24)(21,22)(23,28)
(25,26)(27,32)(29,30)(31,36)(33,34)(35,40)(37,38)(39,44)(41,42)(43,48)(45,46)
(47,52)(49,50)(51,56)(53,54)(55,57);
poly := sub<Sym(57)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;

```

to this polytope