Questions?
See the FAQ
or other info.

Polytope of Type {11,2,36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {11,2,36}*1584
if this polytope has a name.
Group : SmallGroup(1584,113)
Rank : 4
Schlafli Type : {11,2,36}
Number of vertices, edges, etc : 11, 11, 36, 36
Order of s0s1s2s3 : 396
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {11,2,18}*792
   3-fold quotients : {11,2,12}*528
   4-fold quotients : {11,2,9}*396
   6-fold quotients : {11,2,6}*264
   9-fold quotients : {11,2,4}*176
   12-fold quotients : {11,2,3}*132
   18-fold quotients : {11,2,2}*88
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s2 := (13,14)(15,16)(18,21)(19,20)(22,23)(24,25)(26,29)(27,28)(30,31)(32,33)
(34,37)(35,36)(38,39)(40,41)(42,45)(43,44)(46,47);;
s3 := (12,18)(13,15)(14,24)(16,26)(17,20)(19,22)(21,32)(23,34)(25,28)(27,30)
(29,40)(31,42)(33,36)(35,38)(37,46)(39,43)(41,44)(45,47);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(47)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);
s1 := Sym(47)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);
s2 := Sym(47)!(13,14)(15,16)(18,21)(19,20)(22,23)(24,25)(26,29)(27,28)(30,31)
(32,33)(34,37)(35,36)(38,39)(40,41)(42,45)(43,44)(46,47);
s3 := Sym(47)!(12,18)(13,15)(14,24)(16,26)(17,20)(19,22)(21,32)(23,34)(25,28)
(27,30)(29,40)(31,42)(33,36)(35,38)(37,46)(39,43)(41,44)(45,47);
poly := sub<Sym(47)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope