Questions?
See the FAQ
or other info.

Polytope of Type {4,33,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,33,6}*1584
if this polytope has a name.
Group : SmallGroup(1584,662)
Rank : 4
Schlafli Type : {4,33,6}
Number of vertices, edges, etc : 4, 66, 99, 6
Order of s0s1s2s3 : 66
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {4,33,2}*528
   11-fold quotients : {4,3,6}*144
   33-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132);;
s1 := (  3,  4)(  5, 41)(  6, 42)(  7, 44)(  8, 43)(  9, 37)( 10, 38)( 11, 40)
( 12, 39)( 13, 33)( 14, 34)( 15, 36)( 16, 35)( 17, 29)( 18, 30)( 19, 32)
( 20, 31)( 21, 25)( 22, 26)( 23, 28)( 24, 27)( 45, 89)( 46, 90)( 47, 92)
( 48, 91)( 49,129)( 50,130)( 51,132)( 52,131)( 53,125)( 54,126)( 55,128)
( 56,127)( 57,121)( 58,122)( 59,124)( 60,123)( 61,117)( 62,118)( 63,120)
( 64,119)( 65,113)( 66,114)( 67,116)( 68,115)( 69,109)( 70,110)( 71,112)
( 72,111)( 73,105)( 74,106)( 75,108)( 76,107)( 77,101)( 78,102)( 79,104)
( 80,103)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85, 93)( 86, 94)( 87, 96)
( 88, 95);;
s2 := (  1, 49)(  2, 52)(  3, 51)(  4, 50)(  5, 45)(  6, 48)(  7, 47)(  8, 46)
(  9, 85)( 10, 88)( 11, 87)( 12, 86)( 13, 81)( 14, 84)( 15, 83)( 16, 82)
( 17, 77)( 18, 80)( 19, 79)( 20, 78)( 21, 73)( 22, 76)( 23, 75)( 24, 74)
( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)( 32, 66)
( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 37, 57)( 38, 60)( 39, 59)( 40, 58)
( 41, 53)( 42, 56)( 43, 55)( 44, 54)( 89, 93)( 90, 96)( 91, 95)( 92, 94)
( 97,129)( 98,132)( 99,131)(100,130)(101,125)(102,128)(103,127)(104,126)
(105,121)(106,124)(107,123)(108,122)(109,117)(110,120)(111,119)(112,118)
(114,116);;
s3 := ( 45, 89)( 46, 90)( 47, 91)( 48, 92)( 49, 93)( 50, 94)( 51, 95)( 52, 96)
( 53, 97)( 54, 98)( 55, 99)( 56,100)( 57,101)( 58,102)( 59,103)( 60,104)
( 61,105)( 62,106)( 63,107)( 64,108)( 65,109)( 66,110)( 67,111)( 68,112)
( 69,113)( 70,114)( 71,115)( 72,116)( 73,117)( 74,118)( 75,119)( 76,120)
( 77,121)( 78,122)( 79,123)( 80,124)( 81,125)( 82,126)( 83,127)( 84,128)
( 85,129)( 86,130)( 87,131)( 88,132);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(132)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132);
s1 := Sym(132)!(  3,  4)(  5, 41)(  6, 42)(  7, 44)(  8, 43)(  9, 37)( 10, 38)
( 11, 40)( 12, 39)( 13, 33)( 14, 34)( 15, 36)( 16, 35)( 17, 29)( 18, 30)
( 19, 32)( 20, 31)( 21, 25)( 22, 26)( 23, 28)( 24, 27)( 45, 89)( 46, 90)
( 47, 92)( 48, 91)( 49,129)( 50,130)( 51,132)( 52,131)( 53,125)( 54,126)
( 55,128)( 56,127)( 57,121)( 58,122)( 59,124)( 60,123)( 61,117)( 62,118)
( 63,120)( 64,119)( 65,113)( 66,114)( 67,116)( 68,115)( 69,109)( 70,110)
( 71,112)( 72,111)( 73,105)( 74,106)( 75,108)( 76,107)( 77,101)( 78,102)
( 79,104)( 80,103)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85, 93)( 86, 94)
( 87, 96)( 88, 95);
s2 := Sym(132)!(  1, 49)(  2, 52)(  3, 51)(  4, 50)(  5, 45)(  6, 48)(  7, 47)
(  8, 46)(  9, 85)( 10, 88)( 11, 87)( 12, 86)( 13, 81)( 14, 84)( 15, 83)
( 16, 82)( 17, 77)( 18, 80)( 19, 79)( 20, 78)( 21, 73)( 22, 76)( 23, 75)
( 24, 74)( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)
( 32, 66)( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 37, 57)( 38, 60)( 39, 59)
( 40, 58)( 41, 53)( 42, 56)( 43, 55)( 44, 54)( 89, 93)( 90, 96)( 91, 95)
( 92, 94)( 97,129)( 98,132)( 99,131)(100,130)(101,125)(102,128)(103,127)
(104,126)(105,121)(106,124)(107,123)(108,122)(109,117)(110,120)(111,119)
(112,118)(114,116);
s3 := Sym(132)!( 45, 89)( 46, 90)( 47, 91)( 48, 92)( 49, 93)( 50, 94)( 51, 95)
( 52, 96)( 53, 97)( 54, 98)( 55, 99)( 56,100)( 57,101)( 58,102)( 59,103)
( 60,104)( 61,105)( 62,106)( 63,107)( 64,108)( 65,109)( 66,110)( 67,111)
( 68,112)( 69,113)( 70,114)( 71,115)( 72,116)( 73,117)( 74,118)( 75,119)
( 76,120)( 77,121)( 78,122)( 79,123)( 80,124)( 81,125)( 82,126)( 83,127)
( 84,128)( 85,129)( 86,130)( 87,131)( 88,132);
poly := sub<Sym(132)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope