Questions?
See the FAQ
or other info.

# Polytope of Type {2,5,2,4,10}

Atlas Canonical Name : {2,5,2,4,10}*1600
if this polytope has a name.
Group : SmallGroup(1600,10169)
Rank : 6
Schlafli Type : {2,5,2,4,10}
Number of vertices, edges, etc : 2, 5, 5, 4, 20, 10
Order of s0s1s2s3s4s5 : 20
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,5,2,2,10}*800
4-fold quotients : {2,5,2,2,5}*400
5-fold quotients : {2,5,2,4,2}*320
10-fold quotients : {2,5,2,2,2}*160
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := (4,5)(6,7);;
s2 := (3,4)(5,6);;
s3 := ( 9,12)(13,18)(14,19)(20,24)(21,25);;
s4 := ( 8, 9)(10,14)(11,13)(12,17)(15,21)(16,20)(18,23)(19,22)(24,27)(25,26);;
s5 := ( 8,10)( 9,13)(11,15)(12,18)(14,20)(17,22)(19,24)(23,26);;
poly := Group([s0,s1,s2,s3,s4,s5]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s3*s4*s3*s4*s3*s4*s3*s4, s3*s4*s5*s4*s3*s4*s5*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(27)!(1,2);
s1 := Sym(27)!(4,5)(6,7);
s2 := Sym(27)!(3,4)(5,6);
s3 := Sym(27)!( 9,12)(13,18)(14,19)(20,24)(21,25);
s4 := Sym(27)!( 8, 9)(10,14)(11,13)(12,17)(15,21)(16,20)(18,23)(19,22)(24,27)
(25,26);
s5 := Sym(27)!( 8,10)( 9,13)(11,15)(12,18)(14,20)(17,22)(19,24)(23,26);
poly := sub<Sym(27)|s0,s1,s2,s3,s4,s5>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s3*s4*s3*s4*s3*s4*s3*s4,
s3*s4*s5*s4*s3*s4*s5*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;

```

to this polytope