Questions?
See the FAQ
or other info.

# Polytope of Type {18,6}

Atlas Canonical Name : {18,6}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46100)
Rank : 3
Schlafli Type : {18,6}
Number of vertices, edges, etc : 144, 432, 48
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,6}*576e
16-fold quotients : {9,6}*108
48-fold quotients : {9,2}*36, {3,6}*36
144-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)( 50,130)
( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)( 58,142)
( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)( 66,114)
( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)( 74,126)
( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)( 82, 98)
( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)( 90,110)
( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107);;
s1 := (  1, 50)(  2, 49)(  3, 51)(  4, 52)(  5, 62)(  6, 61)(  7, 63)(  8, 64)
(  9, 58)( 10, 57)( 11, 59)( 12, 60)( 13, 54)( 14, 53)( 15, 55)( 16, 56)
( 17, 82)( 18, 81)( 19, 83)( 20, 84)( 21, 94)( 22, 93)( 23, 95)( 24, 96)
( 25, 90)( 26, 89)( 27, 91)( 28, 92)( 29, 86)( 30, 85)( 31, 87)( 32, 88)
( 33, 66)( 34, 65)( 35, 67)( 36, 68)( 37, 78)( 38, 77)( 39, 79)( 40, 80)
( 41, 74)( 42, 73)( 43, 75)( 44, 76)( 45, 70)( 46, 69)( 47, 71)( 48, 72)
( 97,130)( 98,129)( 99,131)(100,132)(101,142)(102,141)(103,143)(104,144)
(105,138)(106,137)(107,139)(108,140)(109,134)(110,133)(111,135)(112,136)
(113,114)(117,126)(118,125)(119,127)(120,128)(121,122);;
s2 := (  2,  5)(  3, 13)(  4,  9)(  7, 14)(  8, 10)( 11, 16)( 18, 21)( 19, 29)
( 20, 25)( 23, 30)( 24, 26)( 27, 32)( 34, 37)( 35, 45)( 36, 41)( 39, 46)
( 40, 42)( 43, 48)( 50, 53)( 51, 61)( 52, 57)( 55, 62)( 56, 58)( 59, 64)
( 66, 69)( 67, 77)( 68, 73)( 71, 78)( 72, 74)( 75, 80)( 82, 85)( 83, 93)
( 84, 89)( 87, 94)( 88, 90)( 91, 96)( 98,101)( 99,109)(100,105)(103,110)
(104,106)(107,112)(114,117)(115,125)(116,121)(119,126)(120,122)(123,128)
(130,133)(131,141)(132,137)(135,142)(136,138)(139,144);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(144)!(  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)
( 50,130)( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)
( 58,142)( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)
( 66,114)( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)
( 74,126)( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)
( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)
( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107);
s1 := Sym(144)!(  1, 50)(  2, 49)(  3, 51)(  4, 52)(  5, 62)(  6, 61)(  7, 63)
(  8, 64)(  9, 58)( 10, 57)( 11, 59)( 12, 60)( 13, 54)( 14, 53)( 15, 55)
( 16, 56)( 17, 82)( 18, 81)( 19, 83)( 20, 84)( 21, 94)( 22, 93)( 23, 95)
( 24, 96)( 25, 90)( 26, 89)( 27, 91)( 28, 92)( 29, 86)( 30, 85)( 31, 87)
( 32, 88)( 33, 66)( 34, 65)( 35, 67)( 36, 68)( 37, 78)( 38, 77)( 39, 79)
( 40, 80)( 41, 74)( 42, 73)( 43, 75)( 44, 76)( 45, 70)( 46, 69)( 47, 71)
( 48, 72)( 97,130)( 98,129)( 99,131)(100,132)(101,142)(102,141)(103,143)
(104,144)(105,138)(106,137)(107,139)(108,140)(109,134)(110,133)(111,135)
(112,136)(113,114)(117,126)(118,125)(119,127)(120,128)(121,122);
s2 := Sym(144)!(  2,  5)(  3, 13)(  4,  9)(  7, 14)(  8, 10)( 11, 16)( 18, 21)
( 19, 29)( 20, 25)( 23, 30)( 24, 26)( 27, 32)( 34, 37)( 35, 45)( 36, 41)
( 39, 46)( 40, 42)( 43, 48)( 50, 53)( 51, 61)( 52, 57)( 55, 62)( 56, 58)
( 59, 64)( 66, 69)( 67, 77)( 68, 73)( 71, 78)( 72, 74)( 75, 80)( 82, 85)
( 83, 93)( 84, 89)( 87, 94)( 88, 90)( 91, 96)( 98,101)( 99,109)(100,105)
(103,110)(104,106)(107,112)(114,117)(115,125)(116,121)(119,126)(120,122)
(123,128)(130,133)(131,141)(132,137)(135,142)(136,138)(139,144);
poly := sub<Sym(144)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 >;

```
References : None.
to this polytope