Questions?
See the FAQ
or other info.

# Polytope of Type {3,2,10,3}

Atlas Canonical Name : {3,2,10,3}*1800
if this polytope has a name.
Group : SmallGroup(1800,575)
Rank : 5
Schlafli Type : {3,2,10,3}
Number of vertices, edges, etc : 3, 3, 50, 75, 15
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
25-fold quotients : {3,2,2,3}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 8)( 6, 7)( 9,24)(10,28)(11,27)(12,26)(13,25)(14,19)(15,23)(16,22)
(17,21)(18,20);;
s3 := ( 4, 5)( 6, 8)( 9,13)(10,12)(14,16)(17,18)(20,23)(21,22)(24,27)(25,26);;
s4 := ( 5,11)( 6,18)( 7,20)( 8,27)( 9,21)(10,28)(13,14)(16,22)(17,24)(19,25);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4,
s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(28)!(2,3);
s1 := Sym(28)!(1,2);
s2 := Sym(28)!( 5, 8)( 6, 7)( 9,24)(10,28)(11,27)(12,26)(13,25)(14,19)(15,23)
(16,22)(17,21)(18,20);
s3 := Sym(28)!( 4, 5)( 6, 8)( 9,13)(10,12)(14,16)(17,18)(20,23)(21,22)(24,27)
(25,26);
s4 := Sym(28)!( 5,11)( 6,18)( 7,20)( 8,27)( 9,21)(10,28)(13,14)(16,22)(17,24)
(19,25);
poly := sub<Sym(28)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4, s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;

```

to this polytope