Questions?
See the FAQ
or other info.

# Polytope of Type {6,18}

Atlas Canonical Name : {6,18}*1944n
if this polytope has a name.
Group : SmallGroup(1944,2340)
Rank : 3
Schlafli Type : {6,18}
Number of vertices, edges, etc : 54, 486, 162
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,18}*648b, {6,18}*648i, {6,6}*648g
6-fold quotients : {6,18}*324a
9-fold quotients : {6,18}*216a, {6,18}*216b, {6,6}*216b, {6,6}*216d
18-fold quotients : {6,9}*108, {6,6}*108
27-fold quotients : {2,18}*72, {6,6}*72a, {6,6}*72b, {6,6}*72c
54-fold quotients : {2,9}*36, {3,6}*36, {6,3}*36
81-fold quotients : {2,6}*24, {6,2}*24
162-fold quotients : {2,3}*12, {3,2}*12
243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(28,55)
(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)(39,65)
(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)(50,78)
(51,77)(52,79)(53,81)(54,80);;
s1 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,51)
(11,49)(12,50)(13,48)(14,46)(15,47)(16,54)(17,52)(18,53)(19,41)(20,42)(21,40)
(22,38)(23,39)(24,37)(25,44)(26,45)(27,43)(58,61)(59,62)(60,63)(64,78)(65,76)
(66,77)(67,75)(68,73)(69,74)(70,81)(71,79)(72,80);;
s2 := ( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)(19,22)
(20,24)(21,23)(26,27)(28,64)(29,66)(30,65)(31,70)(32,72)(33,71)(34,67)(35,69)
(36,68)(37,55)(38,57)(39,56)(40,61)(41,63)(42,62)(43,58)(44,60)(45,59)(46,76)
(47,78)(48,77)(49,73)(50,75)(51,74)(52,79)(53,81)(54,80);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)
(39,65)(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)
(50,78)(51,77)(52,79)(53,81)(54,80);
s1 := Sym(81)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,51)(11,49)(12,50)(13,48)(14,46)(15,47)(16,54)(17,52)(18,53)(19,41)(20,42)
(21,40)(22,38)(23,39)(24,37)(25,44)(26,45)(27,43)(58,61)(59,62)(60,63)(64,78)
(65,76)(66,77)(67,75)(68,73)(69,74)(70,81)(71,79)(72,80);
s2 := Sym(81)!( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)
(19,22)(20,24)(21,23)(26,27)(28,64)(29,66)(30,65)(31,70)(32,72)(33,71)(34,67)
(35,69)(36,68)(37,55)(38,57)(39,56)(40,61)(41,63)(42,62)(43,58)(44,60)(45,59)
(46,76)(47,78)(48,77)(49,73)(50,75)(51,74)(52,79)(53,81)(54,80);
poly := sub<Sym(81)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope