Questions?
See the FAQ
or other info.

# Polytope of Type {8,6,3}

Atlas Canonical Name : {8,6,3}*288
if this polytope has a name.
Group : SmallGroup(288,574)
Rank : 4
Schlafli Type : {8,6,3}
Number of vertices, edges, etc : 8, 24, 9, 3
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{8,6,3,2} of size 576
{8,6,3,4} of size 1152
{8,6,3,6} of size 1728
Vertex Figure Of :
{2,8,6,3} of size 576
{4,8,6,3} of size 1152
{4,8,6,3} of size 1152
{6,8,6,3} of size 1728
{3,8,6,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,3}*144
3-fold quotients : {8,2,3}*96
4-fold quotients : {2,6,3}*72
6-fold quotients : {4,2,3}*48
12-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {16,6,3}*576, {8,6,6}*576c
3-fold covers : {8,6,9}*864, {8,6,3}*864a, {24,6,3}*864b
4-fold covers : {32,6,3}*1152, {8,12,6}*1152c, {8,6,12}*1152c, {16,6,6}*1152c, {8,6,3}*1152, {8,12,3}*1152
5-fold covers : {40,6,3}*1440, {8,6,15}*1440
6-fold covers : {16,6,9}*1728, {16,6,3}*1728a, {8,6,18}*1728b, {8,6,6}*1728c, {48,6,3}*1728b, {24,6,6}*1728e, {8,6,6}*1728e
Permutation Representation (GAP) :
```s0 := ( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)
(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,64)(20,65)(21,66)
(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)(32,59)
(33,60)(34,61)(35,62)(36,63);;
s1 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)(22,34)
(23,35)(24,36)(25,31)(26,32)(27,33)(37,55)(38,56)(39,57)(40,61)(41,62)(42,63)
(43,58)(44,59)(45,60)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)(53,68)
(54,69);;
s2 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)(20,24)
(21,23)(26,27)(28,31)(29,33)(30,32)(35,36)(37,40)(38,42)(39,41)(44,45)(46,49)
(47,51)(48,50)(53,54)(55,58)(56,60)(57,59)(62,63)(64,67)(65,69)(66,68)
(71,72);;
s3 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)(22,26)
(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)(46,47)
(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)
(69,72);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(72)!( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)
(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,64)(20,65)
(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)
(32,59)(33,60)(34,61)(35,62)(36,63);
s1 := Sym(72)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)
(22,34)(23,35)(24,36)(25,31)(26,32)(27,33)(37,55)(38,56)(39,57)(40,61)(41,62)
(42,63)(43,58)(44,59)(45,60)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)
(53,68)(54,69);
s2 := Sym(72)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)
(20,24)(21,23)(26,27)(28,31)(29,33)(30,32)(35,36)(37,40)(38,42)(39,41)(44,45)
(46,49)(47,51)(48,50)(53,54)(55,58)(56,60)(57,59)(62,63)(64,67)(65,69)(66,68)
(71,72);
s3 := Sym(72)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)
(22,26)(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)
(46,47)(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)
(69,72);
poly := sub<Sym(72)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope