Questions?
See the FAQ
or other info.

Polytope of Type {4,44}

Atlas Canonical Name : {4,44}*352
Also Known As : {4,44|2}. if this polytope has another name.
Group : SmallGroup(352,77)
Rank : 3
Schlafli Type : {4,44}
Number of vertices, edges, etc : 4, 88, 44
Order of s0s1s2 : 44
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,44,2} of size 704
{4,44,4} of size 1408
Vertex Figure Of :
{2,4,44} of size 704
{4,4,44} of size 1408
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,44}*176, {4,22}*176
4-fold quotients : {2,22}*88
8-fold quotients : {2,11}*44
11-fold quotients : {4,4}*32
22-fold quotients : {2,4}*16, {4,2}*16
44-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,88}*704a, {4,44}*704, {4,88}*704b, {8,44}*704a, {8,44}*704b
3-fold covers : {12,44}*1056, {4,132}*1056a
4-fold covers : {8,44}*1408a, {4,88}*1408a, {8,88}*1408a, {8,88}*1408b, {8,88}*1408c, {8,88}*1408d, {16,44}*1408a, {4,176}*1408a, {16,44}*1408b, {4,176}*1408b, {4,44}*1408, {4,88}*1408b, {8,44}*1408b
5-fold covers : {20,44}*1760, {4,220}*1760
Permutation Representation (GAP) :
```s0 := (45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)
(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)
(77,88);;
s1 := ( 1,45)( 2,55)( 3,54)( 4,53)( 5,52)( 6,51)( 7,50)( 8,49)( 9,48)(10,47)
(11,46)(12,56)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,60)(20,59)(21,58)
(22,57)(23,67)(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)
(33,68)(34,78)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)
(44,79);;
s2 := ( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)(17,19)
(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)(45,68)
(46,67)(47,77)(48,76)(49,75)(50,74)(51,73)(52,72)(53,71)(54,70)(55,69)(56,79)
(57,78)(58,88)(59,87)(60,86)(61,85)(62,84)(63,83)(64,82)(65,81)(66,80);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(88)!(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)
(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)
(76,87)(77,88);
s1 := Sym(88)!( 1,45)( 2,55)( 3,54)( 4,53)( 5,52)( 6,51)( 7,50)( 8,49)( 9,48)
(10,47)(11,46)(12,56)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,60)(20,59)
(21,58)(22,57)(23,67)(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)
(32,69)(33,68)(34,78)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)
(43,80)(44,79);
s2 := Sym(88)!( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)
(17,19)(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)
(45,68)(46,67)(47,77)(48,76)(49,75)(50,74)(51,73)(52,72)(53,71)(54,70)(55,69)
(56,79)(57,78)(58,88)(59,87)(60,86)(61,85)(62,84)(63,83)(64,82)(65,81)(66,80);
poly := sub<Sym(88)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope