Questions?
See the FAQ
or other info.

# Polytope of Type {14,4,4}

Atlas Canonical Name : {14,4,4}*448
Also Known As : {{14,4|2},{4,4|2}}. if this polytope has another name.
Group : SmallGroup(448,1041)
Rank : 4
Schlafli Type : {14,4,4}
Number of vertices, edges, etc : 14, 28, 8, 4
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{14,4,4,2} of size 896
{14,4,4,4} of size 1792
Vertex Figure Of :
{2,14,4,4} of size 896
{4,14,4,4} of size 1792
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {14,2,4}*224, {14,4,2}*224
4-fold quotients : {7,2,4}*112, {14,2,2}*112
7-fold quotients : {2,4,4}*64
8-fold quotients : {7,2,2}*56
14-fold quotients : {2,2,4}*32, {2,4,2}*32
28-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {28,4,4}*896, {14,4,8}*896a, {14,8,4}*896a, {14,4,8}*896b, {14,8,4}*896b, {14,4,4}*896
3-fold covers : {14,4,12}*1344, {14,12,4}*1344a, {42,4,4}*1344
4-fold covers : {14,4,8}*1792a, {14,8,4}*1792a, {14,8,8}*1792a, {14,8,8}*1792b, {14,8,8}*1792c, {14,8,8}*1792d, {28,4,8}*1792a, {56,4,4}*1792a, {28,4,8}*1792b, {56,4,4}*1792b, {28,8,4}*1792a, {28,4,4}*1792a, {28,4,4}*1792b, {28,8,4}*1792b, {28,8,4}*1792c, {28,8,4}*1792d, {14,4,16}*1792a, {14,16,4}*1792a, {14,4,16}*1792b, {14,16,4}*1792b, {14,4,4}*1792, {14,4,8}*1792b, {14,8,4}*1792b
Permutation Representation (GAP) :
```s0 := ( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)
(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)(46,47)
(51,56)(52,55)(53,54);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)(22,23)
(24,28)(25,27)(29,37)(30,36)(31,42)(32,41)(33,40)(34,39)(35,38)(43,51)(44,50)
(45,56)(46,55)(47,54)(48,53)(49,52);;
s2 := ( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)( 8,36)( 9,37)(10,38)
(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)
(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56);;
s3 := (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)
(39,53)(40,54)(41,55)(42,56);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(56)!( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)
(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)
(46,47)(51,56)(52,55)(53,54);
s1 := Sym(56)!( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)
(22,23)(24,28)(25,27)(29,37)(30,36)(31,42)(32,41)(33,40)(34,39)(35,38)(43,51)
(44,50)(45,56)(46,55)(47,54)(48,53)(49,52);
s2 := Sym(56)!( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)( 8,36)( 9,37)
(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)
(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56);
s3 := Sym(56)!(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)
(38,52)(39,53)(40,54)(41,55)(42,56);
poly := sub<Sym(56)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope