Questions?
See the FAQ
or other info.

# Polytope of Type {7,9}

Atlas Canonical Name : {7,9}*504b
if this polytope has a name.
Group : SmallGroup(504,156)
Rank : 3
Schlafli Type : {7,9}
Number of vertices, edges, etc : 28, 126, 36
Order of s0s1s2 : 7
Order of s0s1s2s1 : 3
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{7,9,2} of size 1008
Vertex Figure Of :
{2,7,9} of size 1008
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {7,9}*1008b, {7,18}*1008b, {7,18}*1008e, {14,9}*1008b, {14,9}*1008e
Permutation Representation (GAP) :
```s0 := (2,3)(4,6)(5,8)(7,9);;
s1 := (1,2)(3,6)(4,5)(7,9);;
s2 := (2,6)(3,4)(5,9)(7,8);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s1*s0 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(9)!(2,3)(4,6)(5,8)(7,9);
s1 := Sym(9)!(1,2)(3,6)(4,5)(7,9);
s2 := Sym(9)!(2,6)(3,4)(5,9)(7,8);
poly := sub<Sym(9)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s1*s0 >;

```
References : None.
to this polytope