# Polytope of Type {6,2,6,4}

Atlas Canonical Name : {6,2,6,4}*576b
if this polytope has a name.
Group : SmallGroup(576,8659)
Rank : 5
Schlafli Type : {6,2,6,4}
Number of vertices, edges, etc : 6, 6, 6, 12, 4
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,2,6,4,2} of size 1152
Vertex Figure Of :
{2,6,2,6,4} of size 1152
{3,6,2,6,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,6,4}*288b, {6,2,3,4}*288
3-fold quotients : {2,2,6,4}*192b
4-fold quotients : {3,2,3,4}*144
6-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,2,6,4}*1152b, {6,2,6,4}*1152
3-fold covers : {18,2,6,4}*1728b, {6,2,18,4}*1728c, {6,6,6,4}*1728c, {6,6,6,4}*1728l, {6,2,6,12}*1728d
Permutation Representation (GAP) :
```s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 7,10)( 8,12);;
s3 := ( 7, 8)( 9,10)(11,12);;
s4 := ( 9,11);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s4*s2*s3*s4*s2*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(12)!(3,4)(5,6);
s1 := Sym(12)!(1,5)(2,3)(4,6);
s2 := Sym(12)!( 7,10)( 8,12);
s3 := Sym(12)!( 7, 8)( 9,10)(11,12);
s4 := Sym(12)!( 9,11);
poly := sub<Sym(12)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s4*s2*s3*s4*s2*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope