Questions?
See the FAQ
or other info.

# Polytope of Type {54,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {54,6}*648a
Also Known As : {54,6|2}. if this polytope has another name.
Group : SmallGroup(648,298)
Rank : 3
Schlafli Type : {54,6}
Number of vertices, edges, etc : 54, 162, 6
Order of s0s1s2 : 54
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{54,6,2} of size 1296
{54,6,3} of size 1944
Vertex Figure Of :
{2,54,6} of size 1296
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {54,2}*216, {18,6}*216a
6-fold quotients : {27,2}*108
9-fold quotients : {18,2}*72, {6,6}*72a
18-fold quotients : {9,2}*36
27-fold quotients : {2,6}*24, {6,2}*24
54-fold quotients : {2,3}*12, {3,2}*12
81-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {54,12}*1296a, {108,6}*1296a
3-fold covers : {54,18}*1944a, {54,6}*1944b, {162,6}*1944a, {54,6}*1944g
Permutation Representation (GAP) :
```s0 := (  2,  3)(  4,  9)(  5,  8)(  6,  7)( 11, 12)( 13, 18)( 14, 17)( 15, 16)
( 20, 21)( 22, 27)( 23, 26)( 24, 25)( 28, 63)( 29, 62)( 30, 61)( 31, 60)
( 32, 59)( 33, 58)( 34, 57)( 35, 56)( 36, 55)( 37, 72)( 38, 71)( 39, 70)
( 40, 69)( 41, 68)( 42, 67)( 43, 66)( 44, 65)( 45, 64)( 46, 81)( 47, 80)
( 48, 79)( 49, 78)( 50, 77)( 51, 76)( 52, 75)( 53, 74)( 54, 73)( 83, 84)
( 85, 90)( 86, 89)( 87, 88)( 92, 93)( 94, 99)( 95, 98)( 96, 97)(101,102)
(103,108)(104,107)(105,106)(109,144)(110,143)(111,142)(112,141)(113,140)
(114,139)(115,138)(116,137)(117,136)(118,153)(119,152)(120,151)(121,150)
(122,149)(123,148)(124,147)(125,146)(126,145)(127,162)(128,161)(129,160)
(130,159)(131,158)(132,157)(133,156)(134,155)(135,154);;
s1 := (  1, 28)(  2, 30)(  3, 29)(  4, 36)(  5, 35)(  6, 34)(  7, 33)(  8, 32)
(  9, 31)( 10, 46)( 11, 48)( 12, 47)( 13, 54)( 14, 53)( 15, 52)( 16, 51)
( 17, 50)( 18, 49)( 19, 37)( 20, 39)( 21, 38)( 22, 45)( 23, 44)( 24, 43)
( 25, 42)( 26, 41)( 27, 40)( 55, 63)( 56, 62)( 57, 61)( 58, 60)( 64, 81)
( 65, 80)( 66, 79)( 67, 78)( 68, 77)( 69, 76)( 70, 75)( 71, 74)( 72, 73)
( 82,109)( 83,111)( 84,110)( 85,117)( 86,116)( 87,115)( 88,114)( 89,113)
( 90,112)( 91,127)( 92,129)( 93,128)( 94,135)( 95,134)( 96,133)( 97,132)
( 98,131)( 99,130)(100,118)(101,120)(102,119)(103,126)(104,125)(105,124)
(106,123)(107,122)(108,121)(136,144)(137,143)(138,142)(139,141)(145,162)
(146,161)(147,160)(148,159)(149,158)(150,157)(151,156)(152,155)(153,154);;
s2 := (  1, 91)(  2, 92)(  3, 93)(  4, 94)(  5, 95)(  6, 96)(  7, 97)(  8, 98)
(  9, 99)( 10, 82)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)( 16, 88)
( 17, 89)( 18, 90)( 19,100)( 20,101)( 21,102)( 22,103)( 23,104)( 24,105)
( 25,106)( 26,107)( 27,108)( 28,118)( 29,119)( 30,120)( 31,121)( 32,122)
( 33,123)( 34,124)( 35,125)( 36,126)( 37,109)( 38,110)( 39,111)( 40,112)
( 41,113)( 42,114)( 43,115)( 44,116)( 45,117)( 46,127)( 47,128)( 48,129)
( 49,130)( 50,131)( 51,132)( 52,133)( 53,134)( 54,135)( 55,145)( 56,146)
( 57,147)( 58,148)( 59,149)( 60,150)( 61,151)( 62,152)( 63,153)( 64,136)
( 65,137)( 66,138)( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)( 72,144)
( 73,154)( 74,155)( 75,156)( 76,157)( 77,158)( 78,159)( 79,160)( 80,161)
( 81,162);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(162)!(  2,  3)(  4,  9)(  5,  8)(  6,  7)( 11, 12)( 13, 18)( 14, 17)
( 15, 16)( 20, 21)( 22, 27)( 23, 26)( 24, 25)( 28, 63)( 29, 62)( 30, 61)
( 31, 60)( 32, 59)( 33, 58)( 34, 57)( 35, 56)( 36, 55)( 37, 72)( 38, 71)
( 39, 70)( 40, 69)( 41, 68)( 42, 67)( 43, 66)( 44, 65)( 45, 64)( 46, 81)
( 47, 80)( 48, 79)( 49, 78)( 50, 77)( 51, 76)( 52, 75)( 53, 74)( 54, 73)
( 83, 84)( 85, 90)( 86, 89)( 87, 88)( 92, 93)( 94, 99)( 95, 98)( 96, 97)
(101,102)(103,108)(104,107)(105,106)(109,144)(110,143)(111,142)(112,141)
(113,140)(114,139)(115,138)(116,137)(117,136)(118,153)(119,152)(120,151)
(121,150)(122,149)(123,148)(124,147)(125,146)(126,145)(127,162)(128,161)
(129,160)(130,159)(131,158)(132,157)(133,156)(134,155)(135,154);
s1 := Sym(162)!(  1, 28)(  2, 30)(  3, 29)(  4, 36)(  5, 35)(  6, 34)(  7, 33)
(  8, 32)(  9, 31)( 10, 46)( 11, 48)( 12, 47)( 13, 54)( 14, 53)( 15, 52)
( 16, 51)( 17, 50)( 18, 49)( 19, 37)( 20, 39)( 21, 38)( 22, 45)( 23, 44)
( 24, 43)( 25, 42)( 26, 41)( 27, 40)( 55, 63)( 56, 62)( 57, 61)( 58, 60)
( 64, 81)( 65, 80)( 66, 79)( 67, 78)( 68, 77)( 69, 76)( 70, 75)( 71, 74)
( 72, 73)( 82,109)( 83,111)( 84,110)( 85,117)( 86,116)( 87,115)( 88,114)
( 89,113)( 90,112)( 91,127)( 92,129)( 93,128)( 94,135)( 95,134)( 96,133)
( 97,132)( 98,131)( 99,130)(100,118)(101,120)(102,119)(103,126)(104,125)
(105,124)(106,123)(107,122)(108,121)(136,144)(137,143)(138,142)(139,141)
(145,162)(146,161)(147,160)(148,159)(149,158)(150,157)(151,156)(152,155)
(153,154);
s2 := Sym(162)!(  1, 91)(  2, 92)(  3, 93)(  4, 94)(  5, 95)(  6, 96)(  7, 97)
(  8, 98)(  9, 99)( 10, 82)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)
( 16, 88)( 17, 89)( 18, 90)( 19,100)( 20,101)( 21,102)( 22,103)( 23,104)
( 24,105)( 25,106)( 26,107)( 27,108)( 28,118)( 29,119)( 30,120)( 31,121)
( 32,122)( 33,123)( 34,124)( 35,125)( 36,126)( 37,109)( 38,110)( 39,111)
( 40,112)( 41,113)( 42,114)( 43,115)( 44,116)( 45,117)( 46,127)( 47,128)
( 48,129)( 49,130)( 50,131)( 51,132)( 52,133)( 53,134)( 54,135)( 55,145)
( 56,146)( 57,147)( 58,148)( 59,149)( 60,150)( 61,151)( 62,152)( 63,153)
( 64,136)( 65,137)( 66,138)( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)
( 72,144)( 73,154)( 74,155)( 75,156)( 76,157)( 77,158)( 78,159)( 79,160)
( 80,161)( 81,162);
poly := sub<Sym(162)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope