include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytopes of Type {6,8}
This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)
There are 66 polytopes of this type in this atlas. They are :
  -  {6,8}*96 (SmallGroup(96,117)) 
  
-  {6,8}*192a (SmallGroup(192,956)) 
  
-  {6,8}*192b (SmallGroup(192,1481)) 
  
-  {6,8}*192c (SmallGroup(192,1485)) 
  
-  {6,8}*288 (SmallGroup(288,873)) 
  
-  {6,8}*336a (SmallGroup(336,208)) 
  
-  {6,8}*336b (SmallGroup(336,208)) 
  
-  {6,8}*384a (SmallGroup(384,5573)) 
  
-  {6,8}*384b (SmallGroup(384,5602)) 
  
-  {6,8}*384c (SmallGroup(384,5602)) 
  
-  {6,8}*384d (SmallGroup(384,17949)) 
  
-  {6,8}*384e (SmallGroup(384,17949)) 
  
-  {6,8}*384f (SmallGroup(384,17958)) 
  
-  {6,8}*384g (SmallGroup(384,18032)) 
  
-  {6,8}*480a (SmallGroup(480,948)) 
  
-  {6,8}*480b (SmallGroup(480,948)) 
  
-  {6,8}*672a (SmallGroup(672,1254)) 
  
-  {6,8}*672b (SmallGroup(672,1254)) 
  
-  {6,8}*672c (SmallGroup(672,1254)) 
  
-  {6,8}*672d (SmallGroup(672,1254)) 
  
-  {6,8}*672e (SmallGroup(672,1254)) 
  
-  {6,8}*672f (SmallGroup(672,1254)) 
  
-  {6,8}*672g (SmallGroup(672,1254)) 
  
-  {6,8}*672h (SmallGroup(672,1254)) 
  
-  {6,8}*672i (SmallGroup(672,1254)) 
  
-  {6,8}*672j (SmallGroup(672,1254)) 
  
-  {6,8}*768a (SmallGroup(768,1086051)) 
  
-  {6,8}*768b (SmallGroup(768,1086052)) 
  
-  {6,8}*768c (SmallGroup(768,1086052)) 
  
-  {6,8}*768d (SmallGroup(768,1086301)) 
  
-  {6,8}*768e (SmallGroup(768,1086320)) 
  
-  {6,8}*768f (SmallGroup(768,1086324)) 
  
-  {6,8}*768g (SmallGroup(768,1086329)) 
  
-  {6,8}*768h (SmallGroup(768,1086333)) 
  
-  {6,8}*768i (SmallGroup(768,1086333)) 
  
-  {6,8}*768j (SmallGroup(768,1086649)) 
  
-  {6,8}*768k (SmallGroup(768,1087795)) 
  
-  {6,8}*768l (SmallGroup(768,1088009)) 
  
-  {6,8}*768m (SmallGroup(768,1088539)) 
  
-  {6,8}*768n (SmallGroup(768,1088551)) 
  
-  {6,8}*864a (SmallGroup(864,2265)) 
  
-  {6,8}*864b (SmallGroup(864,4094)) 
  
-  {6,8}*960a (SmallGroup(960,10869)) 
  
-  {6,8}*960b (SmallGroup(960,10877)) 
  
-  {6,8}*1152a (SmallGroup(1152,157849)) 
  
-  {6,8}*1152b (SmallGroup(1152,157849)) 
  
-  {6,8}*1152c (SmallGroup(1152,157849)) 
  
-  {6,8}*1296 (SmallGroup(1296,3509)) 
  
-  {6,8}*1344a (SmallGroup(1344,11291)) 
  
-  {6,8}*1344b (SmallGroup(1344,11291)) 
  
-  {6,8}*1344c (SmallGroup(1344,11295)) 
  
-  {6,8}*1344d (SmallGroup(1344,11295)) 
  
-  {6,8}*1344e (SmallGroup(1344,11295)) 
  
-  {6,8}*1344f (SmallGroup(1344,11295)) 
  
-  {6,8}*1344g (SmallGroup(1344,11684)) 
  
-  {6,8}*1344h (SmallGroup(1344,11684)) 
  
-  {6,8}*1344i (SmallGroup(1344,11684)) 
  
-  {6,8}*1344j (SmallGroup(1344,11684)) 
  
-  {6,8}*1440a (SmallGroup(1440,4612)) 
  
-  {6,8}*1440b (SmallGroup(1440,4612)) 
  
-  {6,8}*1440c (SmallGroup(1440,5841)) 
  
-  {6,8}*1440d (SmallGroup(1440,5843)) 
  
-  {6,8}*1440e (SmallGroup(1440,5843)) 
  
-  {6,8}*1920a (SmallGroup(1920,240560)) 
  
-  {6,8}*1920b (SmallGroup(1920,240844)) 
  
-  {6,8}*1920c (SmallGroup(1920,240996))