Questions?
See the FAQ
or other info.

Polytope of Type {126,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {126,4}*1008b
if this polytope has a name.
Group : SmallGroup(1008,503)
Rank : 3
Schlafli Type : {126,4}
Number of vertices, edges, etc : 126, 252, 4
Order of s0s1s2 : 126
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {63,4}*504
   3-fold quotients : {42,4}*336b
   6-fold quotients : {21,4}*168
   7-fold quotients : {18,4}*144b
   14-fold quotients : {9,4}*72
   21-fold quotients : {6,4}*48c
   42-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 73)( 14, 74)( 15, 76)
( 16, 75)( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 77)( 22, 78)( 23, 80)
( 24, 79)( 25, 61)( 26, 62)( 27, 64)( 28, 63)( 29, 69)( 30, 70)( 31, 72)
( 32, 71)( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 37, 49)( 38, 50)( 39, 52)
( 40, 51)( 41, 57)( 42, 58)( 43, 60)( 44, 59)( 45, 53)( 46, 54)( 47, 56)
( 48, 55)( 85,177)( 86,178)( 87,180)( 88,179)( 89,173)( 90,174)( 91,176)
( 92,175)( 93,169)( 94,170)( 95,172)( 96,171)( 97,249)( 98,250)( 99,252)
(100,251)(101,245)(102,246)(103,248)(104,247)(105,241)(106,242)(107,244)
(108,243)(109,237)(110,238)(111,240)(112,239)(113,233)(114,234)(115,236)
(116,235)(117,229)(118,230)(119,232)(120,231)(121,225)(122,226)(123,228)
(124,227)(125,221)(126,222)(127,224)(128,223)(129,217)(130,218)(131,220)
(132,219)(133,213)(134,214)(135,216)(136,215)(137,209)(138,210)(139,212)
(140,211)(141,205)(142,206)(143,208)(144,207)(145,201)(146,202)(147,204)
(148,203)(149,197)(150,198)(151,200)(152,199)(153,193)(154,194)(155,196)
(156,195)(157,189)(158,190)(159,192)(160,191)(161,185)(162,186)(163,188)
(164,187)(165,181)(166,182)(167,184)(168,183)(255,256)(257,261)(258,262)
(259,264)(260,263)(265,325)(266,326)(267,328)(268,327)(269,333)(270,334)
(271,336)(272,335)(273,329)(274,330)(275,332)(276,331)(277,313)(278,314)
(279,316)(280,315)(281,321)(282,322)(283,324)(284,323)(285,317)(286,318)
(287,320)(288,319)(289,301)(290,302)(291,304)(292,303)(293,309)(294,310)
(295,312)(296,311)(297,305)(298,306)(299,308)(300,307)(337,429)(338,430)
(339,432)(340,431)(341,425)(342,426)(343,428)(344,427)(345,421)(346,422)
(347,424)(348,423)(349,501)(350,502)(351,504)(352,503)(353,497)(354,498)
(355,500)(356,499)(357,493)(358,494)(359,496)(360,495)(361,489)(362,490)
(363,492)(364,491)(365,485)(366,486)(367,488)(368,487)(369,481)(370,482)
(371,484)(372,483)(373,477)(374,478)(375,480)(376,479)(377,473)(378,474)
(379,476)(380,475)(381,469)(382,470)(383,472)(384,471)(385,465)(386,466)
(387,468)(388,467)(389,461)(390,462)(391,464)(392,463)(393,457)(394,458)
(395,460)(396,459)(397,453)(398,454)(399,456)(400,455)(401,449)(402,450)
(403,452)(404,451)(405,445)(406,446)(407,448)(408,447)(409,441)(410,442)
(411,444)(412,443)(413,437)(414,438)(415,440)(416,439)(417,433)(418,434)
(419,436)(420,435);;
s1 := (  1,349)(  2,352)(  3,351)(  4,350)(  5,357)(  6,360)(  7,359)(  8,358)
(  9,353)( 10,356)( 11,355)( 12,354)( 13,337)( 14,340)( 15,339)( 16,338)
( 17,345)( 18,348)( 19,347)( 20,346)( 21,341)( 22,344)( 23,343)( 24,342)
( 25,409)( 26,412)( 27,411)( 28,410)( 29,417)( 30,420)( 31,419)( 32,418)
( 33,413)( 34,416)( 35,415)( 36,414)( 37,397)( 38,400)( 39,399)( 40,398)
( 41,405)( 42,408)( 43,407)( 44,406)( 45,401)( 46,404)( 47,403)( 48,402)
( 49,385)( 50,388)( 51,387)( 52,386)( 53,393)( 54,396)( 55,395)( 56,394)
( 57,389)( 58,392)( 59,391)( 60,390)( 61,373)( 62,376)( 63,375)( 64,374)
( 65,381)( 66,384)( 67,383)( 68,382)( 69,377)( 70,380)( 71,379)( 72,378)
( 73,361)( 74,364)( 75,363)( 76,362)( 77,369)( 78,372)( 79,371)( 80,370)
( 81,365)( 82,368)( 83,367)( 84,366)( 85,265)( 86,268)( 87,267)( 88,266)
( 89,273)( 90,276)( 91,275)( 92,274)( 93,269)( 94,272)( 95,271)( 96,270)
( 97,253)( 98,256)( 99,255)(100,254)(101,261)(102,264)(103,263)(104,262)
(105,257)(106,260)(107,259)(108,258)(109,325)(110,328)(111,327)(112,326)
(113,333)(114,336)(115,335)(116,334)(117,329)(118,332)(119,331)(120,330)
(121,313)(122,316)(123,315)(124,314)(125,321)(126,324)(127,323)(128,322)
(129,317)(130,320)(131,319)(132,318)(133,301)(134,304)(135,303)(136,302)
(137,309)(138,312)(139,311)(140,310)(141,305)(142,308)(143,307)(144,306)
(145,289)(146,292)(147,291)(148,290)(149,297)(150,300)(151,299)(152,298)
(153,293)(154,296)(155,295)(156,294)(157,277)(158,280)(159,279)(160,278)
(161,285)(162,288)(163,287)(164,286)(165,281)(166,284)(167,283)(168,282)
(169,441)(170,444)(171,443)(172,442)(173,437)(174,440)(175,439)(176,438)
(177,433)(178,436)(179,435)(180,434)(181,429)(182,432)(183,431)(184,430)
(185,425)(186,428)(187,427)(188,426)(189,421)(190,424)(191,423)(192,422)
(193,501)(194,504)(195,503)(196,502)(197,497)(198,500)(199,499)(200,498)
(201,493)(202,496)(203,495)(204,494)(205,489)(206,492)(207,491)(208,490)
(209,485)(210,488)(211,487)(212,486)(213,481)(214,484)(215,483)(216,482)
(217,477)(218,480)(219,479)(220,478)(221,473)(222,476)(223,475)(224,474)
(225,469)(226,472)(227,471)(228,470)(229,465)(230,468)(231,467)(232,466)
(233,461)(234,464)(235,463)(236,462)(237,457)(238,460)(239,459)(240,458)
(241,453)(242,456)(243,455)(244,454)(245,449)(246,452)(247,451)(248,450)
(249,445)(250,448)(251,447)(252,446);;
s2 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)
(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)
(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)
(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)
(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)(271,272)
(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)(287,288)
(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)(303,304)
(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)(319,320)
(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)(335,336)
(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)(351,352)
(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)(367,368)
(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)(383,384)
(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)(399,400)
(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)(415,416)
(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)(431,432)
(433,434)(435,436)(437,438)(439,440)(441,442)(443,444)(445,446)(447,448)
(449,450)(451,452)(453,454)(455,456)(457,458)(459,460)(461,462)(463,464)
(465,466)(467,468)(469,470)(471,472)(473,474)(475,476)(477,478)(479,480)
(481,482)(483,484)(485,486)(487,488)(489,490)(491,492)(493,494)(495,496)
(497,498)(499,500)(501,502)(503,504);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(504)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 73)( 14, 74)
( 15, 76)( 16, 75)( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 77)( 22, 78)
( 23, 80)( 24, 79)( 25, 61)( 26, 62)( 27, 64)( 28, 63)( 29, 69)( 30, 70)
( 31, 72)( 32, 71)( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 37, 49)( 38, 50)
( 39, 52)( 40, 51)( 41, 57)( 42, 58)( 43, 60)( 44, 59)( 45, 53)( 46, 54)
( 47, 56)( 48, 55)( 85,177)( 86,178)( 87,180)( 88,179)( 89,173)( 90,174)
( 91,176)( 92,175)( 93,169)( 94,170)( 95,172)( 96,171)( 97,249)( 98,250)
( 99,252)(100,251)(101,245)(102,246)(103,248)(104,247)(105,241)(106,242)
(107,244)(108,243)(109,237)(110,238)(111,240)(112,239)(113,233)(114,234)
(115,236)(116,235)(117,229)(118,230)(119,232)(120,231)(121,225)(122,226)
(123,228)(124,227)(125,221)(126,222)(127,224)(128,223)(129,217)(130,218)
(131,220)(132,219)(133,213)(134,214)(135,216)(136,215)(137,209)(138,210)
(139,212)(140,211)(141,205)(142,206)(143,208)(144,207)(145,201)(146,202)
(147,204)(148,203)(149,197)(150,198)(151,200)(152,199)(153,193)(154,194)
(155,196)(156,195)(157,189)(158,190)(159,192)(160,191)(161,185)(162,186)
(163,188)(164,187)(165,181)(166,182)(167,184)(168,183)(255,256)(257,261)
(258,262)(259,264)(260,263)(265,325)(266,326)(267,328)(268,327)(269,333)
(270,334)(271,336)(272,335)(273,329)(274,330)(275,332)(276,331)(277,313)
(278,314)(279,316)(280,315)(281,321)(282,322)(283,324)(284,323)(285,317)
(286,318)(287,320)(288,319)(289,301)(290,302)(291,304)(292,303)(293,309)
(294,310)(295,312)(296,311)(297,305)(298,306)(299,308)(300,307)(337,429)
(338,430)(339,432)(340,431)(341,425)(342,426)(343,428)(344,427)(345,421)
(346,422)(347,424)(348,423)(349,501)(350,502)(351,504)(352,503)(353,497)
(354,498)(355,500)(356,499)(357,493)(358,494)(359,496)(360,495)(361,489)
(362,490)(363,492)(364,491)(365,485)(366,486)(367,488)(368,487)(369,481)
(370,482)(371,484)(372,483)(373,477)(374,478)(375,480)(376,479)(377,473)
(378,474)(379,476)(380,475)(381,469)(382,470)(383,472)(384,471)(385,465)
(386,466)(387,468)(388,467)(389,461)(390,462)(391,464)(392,463)(393,457)
(394,458)(395,460)(396,459)(397,453)(398,454)(399,456)(400,455)(401,449)
(402,450)(403,452)(404,451)(405,445)(406,446)(407,448)(408,447)(409,441)
(410,442)(411,444)(412,443)(413,437)(414,438)(415,440)(416,439)(417,433)
(418,434)(419,436)(420,435);
s1 := Sym(504)!(  1,349)(  2,352)(  3,351)(  4,350)(  5,357)(  6,360)(  7,359)
(  8,358)(  9,353)( 10,356)( 11,355)( 12,354)( 13,337)( 14,340)( 15,339)
( 16,338)( 17,345)( 18,348)( 19,347)( 20,346)( 21,341)( 22,344)( 23,343)
( 24,342)( 25,409)( 26,412)( 27,411)( 28,410)( 29,417)( 30,420)( 31,419)
( 32,418)( 33,413)( 34,416)( 35,415)( 36,414)( 37,397)( 38,400)( 39,399)
( 40,398)( 41,405)( 42,408)( 43,407)( 44,406)( 45,401)( 46,404)( 47,403)
( 48,402)( 49,385)( 50,388)( 51,387)( 52,386)( 53,393)( 54,396)( 55,395)
( 56,394)( 57,389)( 58,392)( 59,391)( 60,390)( 61,373)( 62,376)( 63,375)
( 64,374)( 65,381)( 66,384)( 67,383)( 68,382)( 69,377)( 70,380)( 71,379)
( 72,378)( 73,361)( 74,364)( 75,363)( 76,362)( 77,369)( 78,372)( 79,371)
( 80,370)( 81,365)( 82,368)( 83,367)( 84,366)( 85,265)( 86,268)( 87,267)
( 88,266)( 89,273)( 90,276)( 91,275)( 92,274)( 93,269)( 94,272)( 95,271)
( 96,270)( 97,253)( 98,256)( 99,255)(100,254)(101,261)(102,264)(103,263)
(104,262)(105,257)(106,260)(107,259)(108,258)(109,325)(110,328)(111,327)
(112,326)(113,333)(114,336)(115,335)(116,334)(117,329)(118,332)(119,331)
(120,330)(121,313)(122,316)(123,315)(124,314)(125,321)(126,324)(127,323)
(128,322)(129,317)(130,320)(131,319)(132,318)(133,301)(134,304)(135,303)
(136,302)(137,309)(138,312)(139,311)(140,310)(141,305)(142,308)(143,307)
(144,306)(145,289)(146,292)(147,291)(148,290)(149,297)(150,300)(151,299)
(152,298)(153,293)(154,296)(155,295)(156,294)(157,277)(158,280)(159,279)
(160,278)(161,285)(162,288)(163,287)(164,286)(165,281)(166,284)(167,283)
(168,282)(169,441)(170,444)(171,443)(172,442)(173,437)(174,440)(175,439)
(176,438)(177,433)(178,436)(179,435)(180,434)(181,429)(182,432)(183,431)
(184,430)(185,425)(186,428)(187,427)(188,426)(189,421)(190,424)(191,423)
(192,422)(193,501)(194,504)(195,503)(196,502)(197,497)(198,500)(199,499)
(200,498)(201,493)(202,496)(203,495)(204,494)(205,489)(206,492)(207,491)
(208,490)(209,485)(210,488)(211,487)(212,486)(213,481)(214,484)(215,483)
(216,482)(217,477)(218,480)(219,479)(220,478)(221,473)(222,476)(223,475)
(224,474)(225,469)(226,472)(227,471)(228,470)(229,465)(230,468)(231,467)
(232,466)(233,461)(234,464)(235,463)(236,462)(237,457)(238,460)(239,459)
(240,458)(241,453)(242,456)(243,455)(244,454)(245,449)(246,452)(247,451)
(248,450)(249,445)(250,448)(251,447)(252,446);
s2 := Sym(504)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)
(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)
(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)
(255,256)(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)
(271,272)(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)
(287,288)(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)
(303,304)(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)
(319,320)(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)
(335,336)(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)
(351,352)(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)
(367,368)(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)
(383,384)(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)
(399,400)(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)
(415,416)(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)
(431,432)(433,434)(435,436)(437,438)(439,440)(441,442)(443,444)(445,446)
(447,448)(449,450)(451,452)(453,454)(455,456)(457,458)(459,460)(461,462)
(463,464)(465,466)(467,468)(469,470)(471,472)(473,474)(475,476)(477,478)
(479,480)(481,482)(483,484)(485,486)(487,488)(489,490)(491,492)(493,494)
(495,496)(497,498)(499,500)(501,502)(503,504);
poly := sub<Sym(504)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope