Questions?
See the FAQ
or other info.

# Polytope of Type {36,4}

Atlas Canonical Name : {36,4}*1152d
if this polytope has a name.
Group : SmallGroup(1152,154208)
Rank : 3
Schlafli Type : {36,4}
Number of vertices, edges, etc : 144, 288, 16
Order of s0s1s2 : 36
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {36,4}*576b, {18,4}*576b, {36,4}*576c
3-fold quotients : {12,4}*384d
4-fold quotients : {36,4}*288a, {36,4}*288b, {36,4}*288c, {18,4}*288
6-fold quotients : {12,4}*192b, {6,4}*192b, {12,4}*192c
8-fold quotients : {36,2}*144, {18,4}*144a, {9,4}*144, {18,4}*144b, {18,4}*144c
12-fold quotients : {12,4}*96a, {12,4}*96b, {12,4}*96c, {6,4}*96
16-fold quotients : {9,4}*72, {18,2}*72
24-fold quotients : {12,2}*48, {6,4}*48a, {3,4}*48, {6,4}*48b, {6,4}*48c
32-fold quotients : {9,2}*36
36-fold quotients : {4,4}*32
48-fold quotients : {3,4}*24, {6,2}*24
72-fold quotients : {2,4}*16, {4,2}*16
96-fold quotients : {3,2}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 33)( 14, 34)( 15, 36)
( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)( 23, 28)
( 24, 27)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 69)( 50, 70)
( 51, 72)( 52, 71)( 53, 65)( 54, 66)( 55, 68)( 56, 67)( 57, 61)( 58, 62)
( 59, 64)( 60, 63)( 75, 76)( 77, 81)( 78, 82)( 79, 84)( 80, 83)( 85,105)
( 86,106)( 87,108)( 88,107)( 89,101)( 90,102)( 91,104)( 92,103)( 93, 97)
( 94, 98)( 95,100)( 96, 99)(111,112)(113,117)(114,118)(115,120)(116,119)
(121,141)(122,142)(123,144)(124,143)(125,137)(126,138)(127,140)(128,139)
(129,133)(130,134)(131,136)(132,135)(145,181)(146,182)(147,184)(148,183)
(149,189)(150,190)(151,192)(152,191)(153,185)(154,186)(155,188)(156,187)
(157,213)(158,214)(159,216)(160,215)(161,209)(162,210)(163,212)(164,211)
(165,205)(166,206)(167,208)(168,207)(169,201)(170,202)(171,204)(172,203)
(173,197)(174,198)(175,200)(176,199)(177,193)(178,194)(179,196)(180,195)
(217,253)(218,254)(219,256)(220,255)(221,261)(222,262)(223,264)(224,263)
(225,257)(226,258)(227,260)(228,259)(229,285)(230,286)(231,288)(232,287)
(233,281)(234,282)(235,284)(236,283)(237,277)(238,278)(239,280)(240,279)
(241,273)(242,274)(243,276)(244,275)(245,269)(246,270)(247,272)(248,271)
(249,265)(250,266)(251,268)(252,267);;
s1 := (  1,157)(  2,160)(  3,159)(  4,158)(  5,165)(  6,168)(  7,167)(  8,166)
(  9,161)( 10,164)( 11,163)( 12,162)( 13,145)( 14,148)( 15,147)( 16,146)
( 17,153)( 18,156)( 19,155)( 20,154)( 21,149)( 22,152)( 23,151)( 24,150)
( 25,177)( 26,180)( 27,179)( 28,178)( 29,173)( 30,176)( 31,175)( 32,174)
( 33,169)( 34,172)( 35,171)( 36,170)( 37,193)( 38,196)( 39,195)( 40,194)
( 41,201)( 42,204)( 43,203)( 44,202)( 45,197)( 46,200)( 47,199)( 48,198)
( 49,181)( 50,184)( 51,183)( 52,182)( 53,189)( 54,192)( 55,191)( 56,190)
( 57,185)( 58,188)( 59,187)( 60,186)( 61,213)( 62,216)( 63,215)( 64,214)
( 65,209)( 66,212)( 67,211)( 68,210)( 69,205)( 70,208)( 71,207)( 72,206)
( 73,229)( 74,232)( 75,231)( 76,230)( 77,237)( 78,240)( 79,239)( 80,238)
( 81,233)( 82,236)( 83,235)( 84,234)( 85,217)( 86,220)( 87,219)( 88,218)
( 89,225)( 90,228)( 91,227)( 92,226)( 93,221)( 94,224)( 95,223)( 96,222)
( 97,249)( 98,252)( 99,251)(100,250)(101,245)(102,248)(103,247)(104,246)
(105,241)(106,244)(107,243)(108,242)(109,265)(110,268)(111,267)(112,266)
(113,273)(114,276)(115,275)(116,274)(117,269)(118,272)(119,271)(120,270)
(121,253)(122,256)(123,255)(124,254)(125,261)(126,264)(127,263)(128,262)
(129,257)(130,260)(131,259)(132,258)(133,285)(134,288)(135,287)(136,286)
(137,281)(138,284)(139,283)(140,282)(141,277)(142,280)(143,279)(144,278);;
s2 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,218)(146,217)(147,220)(148,219)(149,222)(150,221)(151,224)(152,223)
(153,226)(154,225)(155,228)(156,227)(157,230)(158,229)(159,232)(160,231)
(161,234)(162,233)(163,236)(164,235)(165,238)(166,237)(167,240)(168,239)
(169,242)(170,241)(171,244)(172,243)(173,246)(174,245)(175,248)(176,247)
(177,250)(178,249)(179,252)(180,251)(181,254)(182,253)(183,256)(184,255)
(185,258)(186,257)(187,260)(188,259)(189,262)(190,261)(191,264)(192,263)
(193,266)(194,265)(195,268)(196,267)(197,270)(198,269)(199,272)(200,271)
(201,274)(202,273)(203,276)(204,275)(205,278)(206,277)(207,280)(208,279)
(209,282)(210,281)(211,284)(212,283)(213,286)(214,285)(215,288)(216,287);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(288)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 33)( 14, 34)
( 15, 36)( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)
( 23, 28)( 24, 27)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 69)
( 50, 70)( 51, 72)( 52, 71)( 53, 65)( 54, 66)( 55, 68)( 56, 67)( 57, 61)
( 58, 62)( 59, 64)( 60, 63)( 75, 76)( 77, 81)( 78, 82)( 79, 84)( 80, 83)
( 85,105)( 86,106)( 87,108)( 88,107)( 89,101)( 90,102)( 91,104)( 92,103)
( 93, 97)( 94, 98)( 95,100)( 96, 99)(111,112)(113,117)(114,118)(115,120)
(116,119)(121,141)(122,142)(123,144)(124,143)(125,137)(126,138)(127,140)
(128,139)(129,133)(130,134)(131,136)(132,135)(145,181)(146,182)(147,184)
(148,183)(149,189)(150,190)(151,192)(152,191)(153,185)(154,186)(155,188)
(156,187)(157,213)(158,214)(159,216)(160,215)(161,209)(162,210)(163,212)
(164,211)(165,205)(166,206)(167,208)(168,207)(169,201)(170,202)(171,204)
(172,203)(173,197)(174,198)(175,200)(176,199)(177,193)(178,194)(179,196)
(180,195)(217,253)(218,254)(219,256)(220,255)(221,261)(222,262)(223,264)
(224,263)(225,257)(226,258)(227,260)(228,259)(229,285)(230,286)(231,288)
(232,287)(233,281)(234,282)(235,284)(236,283)(237,277)(238,278)(239,280)
(240,279)(241,273)(242,274)(243,276)(244,275)(245,269)(246,270)(247,272)
(248,271)(249,265)(250,266)(251,268)(252,267);
s1 := Sym(288)!(  1,157)(  2,160)(  3,159)(  4,158)(  5,165)(  6,168)(  7,167)
(  8,166)(  9,161)( 10,164)( 11,163)( 12,162)( 13,145)( 14,148)( 15,147)
( 16,146)( 17,153)( 18,156)( 19,155)( 20,154)( 21,149)( 22,152)( 23,151)
( 24,150)( 25,177)( 26,180)( 27,179)( 28,178)( 29,173)( 30,176)( 31,175)
( 32,174)( 33,169)( 34,172)( 35,171)( 36,170)( 37,193)( 38,196)( 39,195)
( 40,194)( 41,201)( 42,204)( 43,203)( 44,202)( 45,197)( 46,200)( 47,199)
( 48,198)( 49,181)( 50,184)( 51,183)( 52,182)( 53,189)( 54,192)( 55,191)
( 56,190)( 57,185)( 58,188)( 59,187)( 60,186)( 61,213)( 62,216)( 63,215)
( 64,214)( 65,209)( 66,212)( 67,211)( 68,210)( 69,205)( 70,208)( 71,207)
( 72,206)( 73,229)( 74,232)( 75,231)( 76,230)( 77,237)( 78,240)( 79,239)
( 80,238)( 81,233)( 82,236)( 83,235)( 84,234)( 85,217)( 86,220)( 87,219)
( 88,218)( 89,225)( 90,228)( 91,227)( 92,226)( 93,221)( 94,224)( 95,223)
( 96,222)( 97,249)( 98,252)( 99,251)(100,250)(101,245)(102,248)(103,247)
(104,246)(105,241)(106,244)(107,243)(108,242)(109,265)(110,268)(111,267)
(112,266)(113,273)(114,276)(115,275)(116,274)(117,269)(118,272)(119,271)
(120,270)(121,253)(122,256)(123,255)(124,254)(125,261)(126,264)(127,263)
(128,262)(129,257)(130,260)(131,259)(132,258)(133,285)(134,288)(135,287)
(136,286)(137,281)(138,284)(139,283)(140,282)(141,277)(142,280)(143,279)
(144,278);
s2 := Sym(288)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,218)(146,217)(147,220)(148,219)(149,222)(150,221)(151,224)
(152,223)(153,226)(154,225)(155,228)(156,227)(157,230)(158,229)(159,232)
(160,231)(161,234)(162,233)(163,236)(164,235)(165,238)(166,237)(167,240)
(168,239)(169,242)(170,241)(171,244)(172,243)(173,246)(174,245)(175,248)
(176,247)(177,250)(178,249)(179,252)(180,251)(181,254)(182,253)(183,256)
(184,255)(185,258)(186,257)(187,260)(188,259)(189,262)(190,261)(191,264)
(192,263)(193,266)(194,265)(195,268)(196,267)(197,270)(198,269)(199,272)
(200,271)(201,274)(202,273)(203,276)(204,275)(205,278)(206,277)(207,280)
(208,279)(209,282)(210,281)(211,284)(212,283)(213,286)(214,285)(215,288)
(216,287);
poly := sub<Sym(288)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope