Questions?
See the FAQ
or other info.

# Polytope of Type {6,6,6}

Atlas Canonical Name : {6,6,6}*1296t
if this polytope has a name.
Group : SmallGroup(1296,3538)
Rank : 4
Schlafli Type : {6,6,6}
Number of vertices, edges, etc : 18, 54, 54, 6
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,6,6}*432e, {6,6,6}*432f, {6,6,2}*432d
6-fold quotients : {6,3,6}*216
9-fold quotients : {2,6,6}*144c, {6,6,2}*144a, {6,6,2}*144b, {6,6,2}*144c
18-fold quotients : {2,3,6}*72, {3,6,2}*72, {6,3,2}*72
27-fold quotients : {2,6,2}*48, {6,2,2}*48
54-fold quotients : {2,3,2}*24, {3,2,2}*24
81-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 5, 6)( 8, 9)(10,19)(11,21)(12,20)(13,22)(14,24)(15,23)(16,25)
(17,27)(18,26)(29,30)(32,33)(35,36)(37,46)(38,48)(39,47)(40,49)(41,51)(42,50)
(43,52)(44,54)(45,53)(56,57)(59,60)(62,63)(64,73)(65,75)(66,74)(67,76)(68,78)
(69,77)(70,79)(71,81)(72,80);;
s1 := ( 1,11)( 2,10)( 3,12)( 4,17)( 5,16)( 6,18)( 7,14)( 8,13)( 9,15)(19,20)
(22,26)(23,25)(24,27)(28,65)(29,64)(30,66)(31,71)(32,70)(33,72)(34,68)(35,67)
(36,69)(37,56)(38,55)(39,57)(40,62)(41,61)(42,63)(43,59)(44,58)(45,60)(46,74)
(47,73)(48,75)(49,80)(50,79)(51,81)(52,77)(53,76)(54,78);;
s2 := ( 1,31)( 2,33)( 3,32)( 4,28)( 5,30)( 6,29)( 7,34)( 8,36)( 9,35)(10,40)
(11,42)(12,41)(13,37)(14,39)(15,38)(16,43)(17,45)(18,44)(19,49)(20,51)(21,50)
(22,46)(23,48)(24,47)(25,52)(26,54)(27,53)(55,58)(56,60)(57,59)(62,63)(64,67)
(65,69)(66,68)(71,72)(73,76)(74,78)(75,77)(80,81);;
s3 := (28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)
(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)
(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(10,19)(11,21)(12,20)(13,22)(14,24)(15,23)
(16,25)(17,27)(18,26)(29,30)(32,33)(35,36)(37,46)(38,48)(39,47)(40,49)(41,51)
(42,50)(43,52)(44,54)(45,53)(56,57)(59,60)(62,63)(64,73)(65,75)(66,74)(67,76)
(68,78)(69,77)(70,79)(71,81)(72,80);
s1 := Sym(81)!( 1,11)( 2,10)( 3,12)( 4,17)( 5,16)( 6,18)( 7,14)( 8,13)( 9,15)
(19,20)(22,26)(23,25)(24,27)(28,65)(29,64)(30,66)(31,71)(32,70)(33,72)(34,68)
(35,67)(36,69)(37,56)(38,55)(39,57)(40,62)(41,61)(42,63)(43,59)(44,58)(45,60)
(46,74)(47,73)(48,75)(49,80)(50,79)(51,81)(52,77)(53,76)(54,78);
s2 := Sym(81)!( 1,31)( 2,33)( 3,32)( 4,28)( 5,30)( 6,29)( 7,34)( 8,36)( 9,35)
(10,40)(11,42)(12,41)(13,37)(14,39)(15,38)(16,43)(17,45)(18,44)(19,49)(20,51)
(21,50)(22,46)(23,48)(24,47)(25,52)(26,54)(27,53)(55,58)(56,60)(57,59)(62,63)
(64,67)(65,69)(66,68)(71,72)(73,76)(74,78)(75,77)(80,81);
s3 := Sym(81)!(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)
(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)
(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);
poly := sub<Sym(81)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1 >;

```
References : None.
to this polytope