Questions?
See the FAQ
or other info.

# Polytope of Type {80,6}

Atlas Canonical Name : {80,6}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240471)
Rank : 3
Schlafli Type : {80,6}
Number of vertices, edges, etc : 160, 480, 12
Order of s0s1s2 : 80
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {40,6}*960a
4-fold quotients : {20,6}*480a
8-fold quotients : {10,6}*240e
16-fold quotients : {5,6}*120b, {10,3}*120a
32-fold quotients : {5,3}*60
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 1,12)( 2,10)( 3,14)( 4, 8)( 5,16)( 7,15)( 9,13)(18,21)(19,20);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(20,21);;
s2 := (18,19)(20,21);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1,
s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(21)!( 1,12)( 2,10)( 3,14)( 4, 8)( 5,16)( 7,15)( 9,13)(18,21)(19,20);
s1 := Sym(21)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(20,21);
s2 := Sym(21)!(18,19)(20,21);
poly := sub<Sym(21)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1,
s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope