Questions?
See the FAQ
or other info.

# Polytope of Type {99}

Atlas Canonical Name : {99}*198
Also Known As : 99-gon, {99}. if this polytope has another name.
Group : SmallGroup(198,3)
Rank : 2
Schlafli Type : {99}
Number of vertices, edges, etc : 99, 99
Order of s0s1 : 99
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{99,2} of size 396
{99,4} of size 792
{99,6} of size 1188
{99,4} of size 1584
Vertex Figure Of :
{2,99} of size 396
{4,99} of size 792
{6,99} of size 1188
{4,99} of size 1584
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {33}*66
9-fold quotients : {11}*22
11-fold quotients : {9}*18
33-fold quotients : {3}*6
Covers (Minimal Covers in Boldface) :
2-fold covers : {198}*396
3-fold covers : {297}*594
4-fold covers : {396}*792
5-fold covers : {495}*990
6-fold covers : {594}*1188
7-fold covers : {693}*1386
8-fold covers : {792}*1584
9-fold covers : {891}*1782
10-fold covers : {990}*1980
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)
(44,45)(46,47)(48,49)(50,51)(52,53)(54,55)(56,57)(58,59)(60,61)(62,63)(64,65)
(66,67)(68,69)(70,71)(72,73)(74,75)(76,77)(78,79)(80,81)(82,83)(84,85)(86,87)
(88,89)(90,91)(92,93)(94,95)(96,97)(98,99);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)
(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)
(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80)(81,82)(83,84)(85,86)
(87,88)(89,90)(91,92)(93,94)(95,96)(97,98);;
poly := Group([s0,s1]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(99)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)
(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)
(42,43)(44,45)(46,47)(48,49)(50,51)(52,53)(54,55)(56,57)(58,59)(60,61)(62,63)
(64,65)(66,67)(68,69)(70,71)(72,73)(74,75)(76,77)(78,79)(80,81)(82,83)(84,85)
(86,87)(88,89)(90,91)(92,93)(94,95)(96,97)(98,99);
s1 := Sym(99)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)
(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)
(63,64)(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80)(81,82)(83,84)
(85,86)(87,88)(89,90)(91,92)(93,94)(95,96)(97,98);
poly := sub<Sym(99)|s0,s1>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope