Questions?
See the FAQ
or other info.

Polytope of Type {2,2,2,20}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,20}*320
if this polytope has a name.
Group : SmallGroup(320,1610)
Rank : 5
Schlafli Type : {2,2,2,20}
Number of vertices, edges, etc : 2, 2, 2, 20, 20
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,2,20,2} of size 640
   {2,2,2,20,4} of size 1280
   {2,2,2,20,6} of size 1920
   {2,2,2,20,6} of size 1920
Vertex Figure Of :
   {2,2,2,2,20} of size 640
   {3,2,2,2,20} of size 960
   {4,2,2,2,20} of size 1280
   {5,2,2,2,20} of size 1600
   {6,2,2,2,20} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,2,10}*160
   4-fold quotients : {2,2,2,5}*80
   5-fold quotients : {2,2,2,4}*64
   10-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,4,20}*640, {2,4,2,20}*640, {4,2,2,20}*640, {2,2,2,40}*640
   3-fold covers : {2,2,6,20}*960a, {2,6,2,20}*960, {6,2,2,20}*960, {2,2,2,60}*960
   4-fold covers : {2,4,4,20}*1280, {4,4,2,20}*1280, {4,2,4,20}*1280, {2,2,8,20}*1280a, {2,2,4,40}*1280a, {2,2,8,20}*1280b, {2,2,4,40}*1280b, {2,2,4,20}*1280, {2,8,2,20}*1280, {8,2,2,20}*1280, {2,4,2,40}*1280, {4,2,2,40}*1280, {2,2,2,80}*1280
   5-fold covers : {2,2,2,100}*1600, {2,2,10,20}*1600a, {2,2,10,20}*1600b, {2,10,2,20}*1600, {10,2,2,20}*1600
   6-fold covers : {2,2,4,60}*1920a, {2,6,4,20}*1920, {6,2,4,20}*1920, {2,2,12,20}*1920, {2,4,2,60}*1920, {4,2,2,60}*1920, {4,2,6,20}*1920a, {4,6,2,20}*1920a, {6,4,2,20}*1920a, {2,4,6,20}*1920a, {2,12,2,20}*1920, {12,2,2,20}*1920, {2,2,2,120}*1920, {2,2,6,40}*1920, {2,6,2,40}*1920, {6,2,2,40}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26);;
s4 := ( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,25)(18,22)(20,23)(24,26);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(26)!(1,2);
s1 := Sym(26)!(3,4);
s2 := Sym(26)!(5,6);
s3 := Sym(26)!( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26);
s4 := Sym(26)!( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,25)(18,22)(20,23)
(24,26);
poly := sub<Sym(26)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope