# Polytope of Type {12,9}

Atlas Canonical Name : {12,9}*432
if this polytope has a name.
Group : SmallGroup(432,522)
Rank : 3
Schlafli Type : {12,9}
Number of vertices, edges, etc : 24, 108, 18
Order of s0s1s2 : 18
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{12,9,2} of size 864
{12,9,4} of size 1728
Vertex Figure Of :
{2,12,9} of size 864
{4,12,9} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,9}*144, {12,3}*144
4-fold quotients : {6,9}*108
6-fold quotients : {4,9}*72
9-fold quotients : {4,3}*48
12-fold quotients : {2,9}*36, {6,3}*36
18-fold quotients : {4,3}*24
36-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {24,9}*864, {12,18}*864b
3-fold covers : {12,27}*1296, {36,9}*1296, {12,9}*1296c
4-fold covers : {24,9}*1728, {12,36}*1728f, {12,36}*1728g, {24,18}*1728b, {24,18}*1728d, {12,18}*1728d, {12,9}*1728
Permutation Representation (GAP) :
```s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 27)( 14, 28)
( 15, 25)( 16, 26)( 17, 31)( 18, 32)( 19, 29)( 20, 30)( 21, 35)( 22, 36)
( 23, 33)( 24, 34)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 63)( 50, 64)( 51, 61)( 52, 62)( 53, 67)( 54, 68)( 55, 65)( 56, 66)
( 57, 71)( 58, 72)( 59, 69)( 60, 70)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 99)( 86,100)( 87, 97)( 88, 98)( 89,103)( 90,104)
( 91,101)( 92,102)( 93,107)( 94,108)( 95,105)( 96,106);;
s1 := (  1, 13)(  2, 15)(  3, 14)(  4, 16)(  5, 21)(  6, 23)(  7, 22)(  8, 24)
(  9, 17)( 10, 19)( 11, 18)( 12, 20)( 26, 27)( 29, 33)( 30, 35)( 31, 34)
( 32, 36)( 37, 89)( 38, 91)( 39, 90)( 40, 92)( 41, 85)( 42, 87)( 43, 86)
( 44, 88)( 45, 93)( 46, 95)( 47, 94)( 48, 96)( 49, 77)( 50, 79)( 51, 78)
( 52, 80)( 53, 73)( 54, 75)( 55, 74)( 56, 76)( 57, 81)( 58, 83)( 59, 82)
( 60, 84)( 61,101)( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)( 67, 98)
( 68,100)( 69,105)( 70,107)( 71,106)( 72,108);;
s2 := (  1, 73)(  2, 76)(  3, 75)(  4, 74)(  5, 81)(  6, 84)(  7, 83)(  8, 82)
(  9, 77)( 10, 80)( 11, 79)( 12, 78)( 13, 97)( 14,100)( 15, 99)( 16, 98)
( 17,105)( 18,108)( 19,107)( 20,106)( 21,101)( 22,104)( 23,103)( 24,102)
( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 93)( 30, 96)( 31, 95)( 32, 94)
( 33, 89)( 34, 92)( 35, 91)( 36, 90)( 38, 40)( 41, 45)( 42, 48)( 43, 47)
( 44, 46)( 49, 61)( 50, 64)( 51, 63)( 52, 62)( 53, 69)( 54, 72)( 55, 71)
( 56, 70)( 57, 65)( 58, 68)( 59, 67)( 60, 66);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(108)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 27)
( 14, 28)( 15, 25)( 16, 26)( 17, 31)( 18, 32)( 19, 29)( 20, 30)( 21, 35)
( 22, 36)( 23, 33)( 24, 34)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 63)( 50, 64)( 51, 61)( 52, 62)( 53, 67)( 54, 68)( 55, 65)
( 56, 66)( 57, 71)( 58, 72)( 59, 69)( 60, 70)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 99)( 86,100)( 87, 97)( 88, 98)( 89,103)
( 90,104)( 91,101)( 92,102)( 93,107)( 94,108)( 95,105)( 96,106);
s1 := Sym(108)!(  1, 13)(  2, 15)(  3, 14)(  4, 16)(  5, 21)(  6, 23)(  7, 22)
(  8, 24)(  9, 17)( 10, 19)( 11, 18)( 12, 20)( 26, 27)( 29, 33)( 30, 35)
( 31, 34)( 32, 36)( 37, 89)( 38, 91)( 39, 90)( 40, 92)( 41, 85)( 42, 87)
( 43, 86)( 44, 88)( 45, 93)( 46, 95)( 47, 94)( 48, 96)( 49, 77)( 50, 79)
( 51, 78)( 52, 80)( 53, 73)( 54, 75)( 55, 74)( 56, 76)( 57, 81)( 58, 83)
( 59, 82)( 60, 84)( 61,101)( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)
( 67, 98)( 68,100)( 69,105)( 70,107)( 71,106)( 72,108);
s2 := Sym(108)!(  1, 73)(  2, 76)(  3, 75)(  4, 74)(  5, 81)(  6, 84)(  7, 83)
(  8, 82)(  9, 77)( 10, 80)( 11, 79)( 12, 78)( 13, 97)( 14,100)( 15, 99)
( 16, 98)( 17,105)( 18,108)( 19,107)( 20,106)( 21,101)( 22,104)( 23,103)
( 24,102)( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 93)( 30, 96)( 31, 95)
( 32, 94)( 33, 89)( 34, 92)( 35, 91)( 36, 90)( 38, 40)( 41, 45)( 42, 48)
( 43, 47)( 44, 46)( 49, 61)( 50, 64)( 51, 63)( 52, 62)( 53, 69)( 54, 72)
( 55, 71)( 56, 70)( 57, 65)( 58, 68)( 59, 67)( 60, 66);
poly := sub<Sym(108)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope