Questions?
See the FAQ
or other info.

# Polytope of Type {20,12}

Atlas Canonical Name : {20,12}*480
Also Known As : {20,12|2}. if this polytope has another name.
Group : SmallGroup(480,552)
Rank : 3
Schlafli Type : {20,12}
Number of vertices, edges, etc : 20, 120, 12
Order of s0s1s2 : 60
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{20,12,2} of size 960
{20,12,4} of size 1920
{20,12,3} of size 1920
{20,12,4} of size 1920
{20,12,4} of size 1920
Vertex Figure Of :
{2,20,12} of size 960
{4,20,12} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,12}*240, {20,6}*240a
3-fold quotients : {20,4}*160
4-fold quotients : {10,6}*120
5-fold quotients : {4,12}*96a
6-fold quotients : {20,2}*80, {10,4}*80
10-fold quotients : {2,12}*48, {4,6}*48a
12-fold quotients : {10,2}*40
15-fold quotients : {4,4}*32
20-fold quotients : {2,6}*24
24-fold quotients : {5,2}*20
30-fold quotients : {2,4}*16, {4,2}*16
40-fold quotients : {2,3}*12
60-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {20,12}*960a, {20,24}*960a, {40,12}*960a, {20,24}*960b, {40,12}*960b
3-fold covers : {20,36}*1440, {60,12}*1440a, {60,12}*1440b
4-fold covers : {40,12}*1920a, {20,24}*1920a, {40,24}*1920a, {40,24}*1920b, {40,24}*1920c, {40,24}*1920d, {80,12}*1920a, {20,48}*1920a, {80,12}*1920b, {20,48}*1920b, {40,12}*1920b, {20,24}*1920b, {20,12}*1920a, {20,12}*1920c
Permutation Representation (GAP) :
```s0 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)( 38, 39)
( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)( 58, 59)
( 61, 91)( 62, 95)( 63, 94)( 64, 93)( 65, 92)( 66, 96)( 67,100)( 68, 99)
( 69, 98)( 70, 97)( 71,101)( 72,105)( 73,104)( 74,103)( 75,102)( 76,106)
( 77,110)( 78,109)( 79,108)( 80,107)( 81,111)( 82,115)( 83,114)( 84,113)
( 85,112)( 86,116)( 87,120)( 88,119)( 89,118)( 90,117);;
s1 := (  1, 62)(  2, 61)(  3, 65)(  4, 64)(  5, 63)(  6, 72)(  7, 71)(  8, 75)
(  9, 74)( 10, 73)( 11, 67)( 12, 66)( 13, 70)( 14, 69)( 15, 68)( 16, 77)
( 17, 76)( 18, 80)( 19, 79)( 20, 78)( 21, 87)( 22, 86)( 23, 90)( 24, 89)
( 25, 88)( 26, 82)( 27, 81)( 28, 85)( 29, 84)( 30, 83)( 31, 92)( 32, 91)
( 33, 95)( 34, 94)( 35, 93)( 36,102)( 37,101)( 38,105)( 39,104)( 40,103)
( 41, 97)( 42, 96)( 43,100)( 44, 99)( 45, 98)( 46,107)( 47,106)( 48,110)
( 49,109)( 50,108)( 51,117)( 52,116)( 53,120)( 54,119)( 55,118)( 56,112)
( 57,111)( 58,115)( 59,114)( 60,113);;
s2 := (  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 16, 21)( 17, 22)( 18, 23)
( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)( 46, 51)
( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 81)( 62, 82)( 63, 83)( 64, 84)
( 65, 85)( 66, 76)( 67, 77)( 68, 78)( 69, 79)( 70, 80)( 71, 86)( 72, 87)
( 73, 88)( 74, 89)( 75, 90)( 91,111)( 92,112)( 93,113)( 94,114)( 95,115)
( 96,106)( 97,107)( 98,108)( 99,109)(100,110)(101,116)(102,117)(103,118)
(104,119)(105,120);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(120)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)
( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)
( 58, 59)( 61, 91)( 62, 95)( 63, 94)( 64, 93)( 65, 92)( 66, 96)( 67,100)
( 68, 99)( 69, 98)( 70, 97)( 71,101)( 72,105)( 73,104)( 74,103)( 75,102)
( 76,106)( 77,110)( 78,109)( 79,108)( 80,107)( 81,111)( 82,115)( 83,114)
( 84,113)( 85,112)( 86,116)( 87,120)( 88,119)( 89,118)( 90,117);
s1 := Sym(120)!(  1, 62)(  2, 61)(  3, 65)(  4, 64)(  5, 63)(  6, 72)(  7, 71)
(  8, 75)(  9, 74)( 10, 73)( 11, 67)( 12, 66)( 13, 70)( 14, 69)( 15, 68)
( 16, 77)( 17, 76)( 18, 80)( 19, 79)( 20, 78)( 21, 87)( 22, 86)( 23, 90)
( 24, 89)( 25, 88)( 26, 82)( 27, 81)( 28, 85)( 29, 84)( 30, 83)( 31, 92)
( 32, 91)( 33, 95)( 34, 94)( 35, 93)( 36,102)( 37,101)( 38,105)( 39,104)
( 40,103)( 41, 97)( 42, 96)( 43,100)( 44, 99)( 45, 98)( 46,107)( 47,106)
( 48,110)( 49,109)( 50,108)( 51,117)( 52,116)( 53,120)( 54,119)( 55,118)
( 56,112)( 57,111)( 58,115)( 59,114)( 60,113);
s2 := Sym(120)!(  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 16, 21)( 17, 22)
( 18, 23)( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)
( 46, 51)( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 81)( 62, 82)( 63, 83)
( 64, 84)( 65, 85)( 66, 76)( 67, 77)( 68, 78)( 69, 79)( 70, 80)( 71, 86)
( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,111)( 92,112)( 93,113)( 94,114)
( 95,115)( 96,106)( 97,107)( 98,108)( 99,109)(100,110)(101,116)(102,117)
(103,118)(104,119)(105,120);
poly := sub<Sym(120)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope