Questions?
See the FAQ
or other info.

# Polytope of Type {18,18}

Atlas Canonical Name : {18,18}*648c
if this polytope has a name.
Group : SmallGroup(648,296)
Rank : 3
Schlafli Type : {18,18}
Number of vertices, edges, etc : 18, 162, 18
Order of s0s1s2 : 18
Order of s0s1s2s1 : 18
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{18,18,2} of size 1296
Vertex Figure Of :
{2,18,18} of size 1296
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,18}*324
3-fold quotients : {18,6}*216b
6-fold quotients : {9,6}*108
9-fold quotients : {18,2}*72, {6,6}*72c
18-fold quotients : {9,2}*36, {3,6}*36
27-fold quotients : {6,2}*24
54-fold quotients : {3,2}*12
81-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {36,18}*1296b, {18,36}*1296c
3-fold covers : {18,18}*1944a, {54,18}*1944b, {18,18}*1944af
Permutation Representation (GAP) :
```s0 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 21)( 11, 20)( 12, 19)( 13, 27)
( 14, 26)( 15, 25)( 16, 24)( 17, 23)( 18, 22)( 28, 61)( 29, 63)( 30, 62)
( 31, 58)( 32, 60)( 33, 59)( 34, 55)( 35, 57)( 36, 56)( 37, 81)( 38, 80)
( 39, 79)( 40, 78)( 41, 77)( 42, 76)( 43, 75)( 44, 74)( 45, 73)( 46, 72)
( 47, 71)( 48, 70)( 49, 69)( 50, 68)( 51, 67)( 52, 66)( 53, 65)( 54, 64)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 91,102)( 92,101)( 93,100)( 94,108)
( 95,107)( 96,106)( 97,105)( 98,104)( 99,103)(109,142)(110,144)(111,143)
(112,139)(113,141)(114,140)(115,136)(116,138)(117,137)(118,162)(119,161)
(120,160)(121,159)(122,158)(123,157)(124,156)(125,155)(126,154)(127,153)
(128,152)(129,151)(130,150)(131,149)(132,148)(133,147)(134,146)(135,145);;
s1 := (  1,118)(  2,120)(  3,119)(  4,124)(  5,126)(  6,125)(  7,121)(  8,123)
(  9,122)( 10,109)( 11,111)( 12,110)( 13,115)( 14,117)( 15,116)( 16,112)
( 17,114)( 18,113)( 19,129)( 20,128)( 21,127)( 22,135)( 23,134)( 24,133)
( 25,132)( 26,131)( 27,130)( 28, 91)( 29, 93)( 30, 92)( 31, 97)( 32, 99)
( 33, 98)( 34, 94)( 35, 96)( 36, 95)( 37, 82)( 38, 84)( 39, 83)( 40, 88)
( 41, 90)( 42, 89)( 43, 85)( 44, 87)( 45, 86)( 46,102)( 47,101)( 48,100)
( 49,108)( 50,107)( 51,106)( 52,105)( 53,104)( 54,103)( 55,151)( 56,153)
( 57,152)( 58,148)( 59,150)( 60,149)( 61,145)( 62,147)( 63,146)( 64,142)
( 65,144)( 66,143)( 67,139)( 68,141)( 69,140)( 70,136)( 71,138)( 72,137)
( 73,162)( 74,161)( 75,160)( 76,159)( 77,158)( 78,157)( 79,156)( 80,155)
( 81,154);;
s2 := (  2,  3)(  5,  6)(  8,  9)( 10, 21)( 11, 20)( 12, 19)( 13, 24)( 14, 23)
( 15, 22)( 16, 27)( 17, 26)( 18, 25)( 29, 30)( 32, 33)( 35, 36)( 37, 48)
( 38, 47)( 39, 46)( 40, 51)( 41, 50)( 42, 49)( 43, 54)( 44, 53)( 45, 52)
( 56, 57)( 59, 60)( 62, 63)( 64, 75)( 65, 74)( 66, 73)( 67, 78)( 68, 77)
( 69, 76)( 70, 81)( 71, 80)( 72, 79)( 83, 84)( 86, 87)( 89, 90)( 91,102)
( 92,101)( 93,100)( 94,105)( 95,104)( 96,103)( 97,108)( 98,107)( 99,106)
(110,111)(113,114)(116,117)(118,129)(119,128)(120,127)(121,132)(122,131)
(123,130)(124,135)(125,134)(126,133)(137,138)(140,141)(143,144)(145,156)
(146,155)(147,154)(148,159)(149,158)(150,157)(151,162)(152,161)(153,160);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(162)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 21)( 11, 20)( 12, 19)
( 13, 27)( 14, 26)( 15, 25)( 16, 24)( 17, 23)( 18, 22)( 28, 61)( 29, 63)
( 30, 62)( 31, 58)( 32, 60)( 33, 59)( 34, 55)( 35, 57)( 36, 56)( 37, 81)
( 38, 80)( 39, 79)( 40, 78)( 41, 77)( 42, 76)( 43, 75)( 44, 74)( 45, 73)
( 46, 72)( 47, 71)( 48, 70)( 49, 69)( 50, 68)( 51, 67)( 52, 66)( 53, 65)
( 54, 64)( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 91,102)( 92,101)( 93,100)
( 94,108)( 95,107)( 96,106)( 97,105)( 98,104)( 99,103)(109,142)(110,144)
(111,143)(112,139)(113,141)(114,140)(115,136)(116,138)(117,137)(118,162)
(119,161)(120,160)(121,159)(122,158)(123,157)(124,156)(125,155)(126,154)
(127,153)(128,152)(129,151)(130,150)(131,149)(132,148)(133,147)(134,146)
(135,145);
s1 := Sym(162)!(  1,118)(  2,120)(  3,119)(  4,124)(  5,126)(  6,125)(  7,121)
(  8,123)(  9,122)( 10,109)( 11,111)( 12,110)( 13,115)( 14,117)( 15,116)
( 16,112)( 17,114)( 18,113)( 19,129)( 20,128)( 21,127)( 22,135)( 23,134)
( 24,133)( 25,132)( 26,131)( 27,130)( 28, 91)( 29, 93)( 30, 92)( 31, 97)
( 32, 99)( 33, 98)( 34, 94)( 35, 96)( 36, 95)( 37, 82)( 38, 84)( 39, 83)
( 40, 88)( 41, 90)( 42, 89)( 43, 85)( 44, 87)( 45, 86)( 46,102)( 47,101)
( 48,100)( 49,108)( 50,107)( 51,106)( 52,105)( 53,104)( 54,103)( 55,151)
( 56,153)( 57,152)( 58,148)( 59,150)( 60,149)( 61,145)( 62,147)( 63,146)
( 64,142)( 65,144)( 66,143)( 67,139)( 68,141)( 69,140)( 70,136)( 71,138)
( 72,137)( 73,162)( 74,161)( 75,160)( 76,159)( 77,158)( 78,157)( 79,156)
( 80,155)( 81,154);
s2 := Sym(162)!(  2,  3)(  5,  6)(  8,  9)( 10, 21)( 11, 20)( 12, 19)( 13, 24)
( 14, 23)( 15, 22)( 16, 27)( 17, 26)( 18, 25)( 29, 30)( 32, 33)( 35, 36)
( 37, 48)( 38, 47)( 39, 46)( 40, 51)( 41, 50)( 42, 49)( 43, 54)( 44, 53)
( 45, 52)( 56, 57)( 59, 60)( 62, 63)( 64, 75)( 65, 74)( 66, 73)( 67, 78)
( 68, 77)( 69, 76)( 70, 81)( 71, 80)( 72, 79)( 83, 84)( 86, 87)( 89, 90)
( 91,102)( 92,101)( 93,100)( 94,105)( 95,104)( 96,103)( 97,108)( 98,107)
( 99,106)(110,111)(113,114)(116,117)(118,129)(119,128)(120,127)(121,132)
(122,131)(123,130)(124,135)(125,134)(126,133)(137,138)(140,141)(143,144)
(145,156)(146,155)(147,154)(148,159)(149,158)(150,157)(151,162)(152,161)
(153,160);
poly := sub<Sym(162)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope