Questions?
See the FAQ
or other info.

# Polytope of Type {136,2}

Atlas Canonical Name : {136,2}*544
if this polytope has a name.
Group : SmallGroup(544,125)
Rank : 3
Schlafli Type : {136,2}
Number of vertices, edges, etc : 136, 136, 2
Order of s0s1s2 : 136
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{136,2,2} of size 1088
{136,2,3} of size 1632
Vertex Figure Of :
{2,136,2} of size 1088
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {68,2}*272
4-fold quotients : {34,2}*136
8-fold quotients : {17,2}*68
17-fold quotients : {8,2}*32
34-fold quotients : {4,2}*16
68-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {136,4}*1088a, {272,2}*1088
3-fold covers : {136,6}*1632, {408,2}*1632
Permutation Representation (GAP) :
```s0 := (  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)
( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)( 26, 27)
( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)( 41, 63)( 42, 62)
( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)( 49, 55)( 50, 54)
( 51, 53)( 69,103)( 70,119)( 71,118)( 72,117)( 73,116)( 74,115)( 75,114)
( 76,113)( 77,112)( 78,111)( 79,110)( 80,109)( 81,108)( 82,107)( 83,106)
( 84,105)( 85,104)( 86,120)( 87,136)( 88,135)( 89,134)( 90,133)( 91,132)
( 92,131)( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)( 99,124)
(100,123)(101,122)(102,121);;
s1 := (  1, 70)(  2, 69)(  3, 85)(  4, 84)(  5, 83)(  6, 82)(  7, 81)(  8, 80)
(  9, 79)( 10, 78)( 11, 77)( 12, 76)( 13, 75)( 14, 74)( 15, 73)( 16, 72)
( 17, 71)( 18, 87)( 19, 86)( 20,102)( 21,101)( 22,100)( 23, 99)( 24, 98)
( 25, 97)( 26, 96)( 27, 95)( 28, 94)( 29, 93)( 30, 92)( 31, 91)( 32, 90)
( 33, 89)( 34, 88)( 35,121)( 36,120)( 37,136)( 38,135)( 39,134)( 40,133)
( 41,132)( 42,131)( 43,130)( 44,129)( 45,128)( 46,127)( 47,126)( 48,125)
( 49,124)( 50,123)( 51,122)( 52,104)( 53,103)( 54,119)( 55,118)( 56,117)
( 57,116)( 58,115)( 59,114)( 60,113)( 61,112)( 62,111)( 63,110)( 64,109)
( 65,108)( 66,107)( 67,106)( 68,105);;
s2 := (137,138);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(138)!(  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)
(  9, 10)( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)
( 26, 27)( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)( 41, 63)
( 42, 62)( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)( 49, 55)
( 50, 54)( 51, 53)( 69,103)( 70,119)( 71,118)( 72,117)( 73,116)( 74,115)
( 75,114)( 76,113)( 77,112)( 78,111)( 79,110)( 80,109)( 81,108)( 82,107)
( 83,106)( 84,105)( 85,104)( 86,120)( 87,136)( 88,135)( 89,134)( 90,133)
( 91,132)( 92,131)( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)
( 99,124)(100,123)(101,122)(102,121);
s1 := Sym(138)!(  1, 70)(  2, 69)(  3, 85)(  4, 84)(  5, 83)(  6, 82)(  7, 81)
(  8, 80)(  9, 79)( 10, 78)( 11, 77)( 12, 76)( 13, 75)( 14, 74)( 15, 73)
( 16, 72)( 17, 71)( 18, 87)( 19, 86)( 20,102)( 21,101)( 22,100)( 23, 99)
( 24, 98)( 25, 97)( 26, 96)( 27, 95)( 28, 94)( 29, 93)( 30, 92)( 31, 91)
( 32, 90)( 33, 89)( 34, 88)( 35,121)( 36,120)( 37,136)( 38,135)( 39,134)
( 40,133)( 41,132)( 42,131)( 43,130)( 44,129)( 45,128)( 46,127)( 47,126)
( 48,125)( 49,124)( 50,123)( 51,122)( 52,104)( 53,103)( 54,119)( 55,118)
( 56,117)( 57,116)( 58,115)( 59,114)( 60,113)( 61,112)( 62,111)( 63,110)
( 64,109)( 65,108)( 66,107)( 67,106)( 68,105);
s2 := Sym(138)!(137,138);
poly := sub<Sym(138)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope