include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytopes of Type {12,24}
This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)
There are 62 polytopes of this type in this atlas. They are :
  -  {12,24}*576a (SmallGroup(576,2279)) 
  
-  {12,24}*576b (SmallGroup(576,2480)) 
  
-  {12,24}*576c (SmallGroup(576,2829)) 
  
-  {12,24}*576d (SmallGroup(576,2829)) 
  
-  {12,24}*576e (SmallGroup(576,2897)) 
  
-  {12,24}*576f (SmallGroup(576,2897)) 
  
-  {12,24}*768a (SmallGroup(768,1086745)) 
  
-  {12,24}*768b (SmallGroup(768,1086909)) 
  
-  {12,24}*768c (SmallGroup(768,1087755)) 
  
-  {12,24}*768d (SmallGroup(768,1087779)) 
  
-  {12,24}*768e (SmallGroup(768,1087796)) 
  
-  {12,24}*768f (SmallGroup(768,1087808)) 
  
-  {12,24}*1152a (SmallGroup(1152,12010)) 
  
-  {12,24}*1152b (SmallGroup(1152,12010)) 
  
-  {12,24}*1152c (SmallGroup(1152,12014)) 
  
-  {12,24}*1152d (SmallGroup(1152,32543)) 
  
-  {12,24}*1152e (SmallGroup(1152,32543)) 
  
-  {12,24}*1152f (SmallGroup(1152,32550)) 
  
-  {12,24}*1152g (SmallGroup(1152,154485)) 
  
-  {12,24}*1152h (SmallGroup(1152,154485)) 
  
-  {12,24}*1152i (SmallGroup(1152,155629)) 
  
-  {12,24}*1152j (SmallGroup(1152,155629)) 
  
-  {12,24}*1152k (SmallGroup(1152,155672)) 
  
-  {12,24}*1152l (SmallGroup(1152,155672)) 
  
-  {12,24}*1152m (SmallGroup(1152,155677)) 
  
-  {12,24}*1152n (SmallGroup(1152,155788)) 
  
-  {12,24}*1152o (SmallGroup(1152,155800)) 
  
-  {12,24}*1152p (SmallGroup(1152,155800)) 
  
-  {12,24}*1152q (SmallGroup(1152,155801)) 
  
-  {12,24}*1152r (SmallGroup(1152,155801)) 
  
-  {12,24}*1152s (SmallGroup(1152,155849)) 
  
-  {12,24}*1152t (SmallGroup(1152,155865)) 
  
-  {12,24}*1152u (SmallGroup(1152,156202)) 
  
-  {12,24}*1152v (SmallGroup(1152,156387)) 
  
-  {12,24}*1152w (SmallGroup(1152,156484)) 
  
-  {12,24}*1152x (SmallGroup(1152,156509)) 
  
-  {12,24}*1152y (SmallGroup(1152,157458)) 
  
-  {12,24}*1152z (SmallGroup(1152,157458)) 
  
-  {12,24}*1728a (SmallGroup(1728,3511)) 
  
-  {12,24}*1728b (SmallGroup(1728,4110)) 
  
-  {12,24}*1728c (SmallGroup(1728,5113)) 
  
-  {12,24}*1728d (SmallGroup(1728,5113)) 
  
-  {12,24}*1728e (SmallGroup(1728,5273)) 
  
-  {12,24}*1728f (SmallGroup(1728,5273)) 
  
-  {12,24}*1728g (SmallGroup(1728,12653)) 
  
-  {12,24}*1728h (SmallGroup(1728,12653)) 
  
-  {12,24}*1728i (SmallGroup(1728,12703)) 
  
-  {12,24}*1728j (SmallGroup(1728,12703)) 
  
-  {12,24}*1728k (SmallGroup(1728,12713)) 
  
-  {12,24}*1728l (SmallGroup(1728,12713)) 
  
-  {12,24}*1728m (SmallGroup(1728,12762)) 
  
-  {12,24}*1728n (SmallGroup(1728,12762)) 
  
-  {12,24}*1728o (SmallGroup(1728,21860)) 
  
-  {12,24}*1728p (SmallGroup(1728,21980)) 
  
-  {12,24}*1728q (SmallGroup(1728,31258)) 
  
-  {12,24}*1728r (SmallGroup(1728,31294)) 
  
-  {12,24}*1728s (SmallGroup(1728,31593)) 
  
-  {12,24}*1728t (SmallGroup(1728,31623)) 
  
-  {12,24}*1728u (SmallGroup(1728,33554)) 
  
-  {12,24}*1728v (SmallGroup(1728,33596)) 
  
-  {12,24}*1728w (SmallGroup(1728,33616)) 
  
-  {12,24}*1728x (SmallGroup(1728,33667))